MakeItFrom.com
Menu (ESC)

3004 Aluminum vs. N07752 Nickel

3004 aluminum belongs to the aluminum alloys classification, while N07752 nickel belongs to the nickel alloys. There are 30 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 3004 aluminum and the bottom bar is N07752 nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 70
190
Elongation at Break, % 1.1 to 19
22
Fatigue Strength, MPa 55 to 120
450
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 26
73
Shear Strength, MPa 100 to 180
710
Tensile Strength: Ultimate (UTS), MPa 170 to 310
1120
Tensile Strength: Yield (Proof), MPa 68 to 270
740

Thermal Properties

Latent Heat of Fusion, J/g 400
310
Maximum Temperature: Mechanical, °C 180
960
Melting Completion (Liquidus), °C 650
1380
Melting Onset (Solidus), °C 630
1330
Specific Heat Capacity, J/kg-K 900
460
Thermal Conductivity, W/m-K 160
13
Thermal Expansion, µm/m-K 24
12

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 42
1.4
Electrical Conductivity: Equal Weight (Specific), % IACS 140
1.5

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
60
Density, g/cm3 2.8
8.4
Embodied Carbon, kg CO2/kg material 8.3
10
Embodied Energy, MJ/kg 150
150
Embodied Water, L/kg 1180
260

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 3.2 to 27
220
Resilience: Unit (Modulus of Resilience), kJ/m3 33 to 540
1450
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 50
23
Strength to Weight: Axial, points 18 to 31
37
Strength to Weight: Bending, points 25 to 37
29
Thermal Diffusivity, mm2/s 65
3.2
Thermal Shock Resistance, points 7.6 to 13
34

Alloy Composition

Aluminum (Al), % 95.6 to 98.2
0.4 to 1.0
Boron (B), % 0
0 to 0.0070
Carbon (C), % 0
0.020 to 0.060
Chromium (Cr), % 0
14.5 to 17
Cobalt (Co), % 0
0 to 0.050
Copper (Cu), % 0 to 0.25
0 to 0.5
Iron (Fe), % 0 to 0.7
5.0 to 9.0
Magnesium (Mg), % 0.8 to 1.3
0
Manganese (Mn), % 1.0 to 1.5
0 to 1.0
Nickel (Ni), % 0
70 to 77.1
Niobium (Nb), % 0
0.7 to 1.2
Phosphorus (P), % 0
0 to 0.0080
Silicon (Si), % 0 to 0.3
0 to 0.5
Sulfur (S), % 0
0 to 0.0030
Titanium (Ti), % 0
2.3 to 2.8
Vanadium (V), % 0
0 to 0.1
Zinc (Zn), % 0 to 0.25
0 to 0.050
Residuals, % 0 to 0.15
0