MakeItFrom.com
Menu (ESC)

3004 Aluminum vs. S32808 Stainless Steel

3004 aluminum belongs to the aluminum alloys classification, while S32808 stainless steel belongs to the iron alloys. There are 31 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 3004 aluminum and the bottom bar is S32808 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 45 to 83
270
Elastic (Young's, Tensile) Modulus, GPa 70
210
Elongation at Break, % 1.1 to 19
17
Fatigue Strength, MPa 55 to 120
350
Poisson's Ratio 0.33
0.27
Shear Modulus, GPa 26
81
Shear Strength, MPa 100 to 180
480
Tensile Strength: Ultimate (UTS), MPa 170 to 310
780
Tensile Strength: Yield (Proof), MPa 68 to 270
570

Thermal Properties

Latent Heat of Fusion, J/g 400
300
Maximum Temperature: Mechanical, °C 180
1100
Melting Completion (Liquidus), °C 650
1470
Melting Onset (Solidus), °C 630
1420
Specific Heat Capacity, J/kg-K 900
480
Thermal Conductivity, W/m-K 160
14
Thermal Expansion, µm/m-K 24
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 42
2.2
Electrical Conductivity: Equal Weight (Specific), % IACS 140
2.4

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
24
Density, g/cm3 2.8
7.9
Embodied Carbon, kg CO2/kg material 8.3
4.0
Embodied Energy, MJ/kg 150
57
Embodied Water, L/kg 1180
180

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 3.2 to 27
120
Resilience: Unit (Modulus of Resilience), kJ/m3 33 to 540
790
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 50
25
Strength to Weight: Axial, points 18 to 31
27
Strength to Weight: Bending, points 25 to 37
24
Thermal Diffusivity, mm2/s 65
3.8
Thermal Shock Resistance, points 7.6 to 13
21

Alloy Composition

Aluminum (Al), % 95.6 to 98.2
0
Carbon (C), % 0
0 to 0.030
Chromium (Cr), % 0
27 to 27.9
Copper (Cu), % 0 to 0.25
0
Iron (Fe), % 0 to 0.7
58.1 to 62.8
Magnesium (Mg), % 0.8 to 1.3
0
Manganese (Mn), % 1.0 to 1.5
0 to 1.1
Molybdenum (Mo), % 0
0.8 to 1.2
Nickel (Ni), % 0
7.0 to 8.2
Nitrogen (N), % 0
0.3 to 0.4
Phosphorus (P), % 0
0 to 0.030
Silicon (Si), % 0 to 0.3
0 to 0.5
Sulfur (S), % 0
0 to 0.010
Tungsten (W), % 0
2.1 to 2.5
Zinc (Zn), % 0 to 0.25
0
Residuals, % 0 to 0.15
0