MakeItFrom.com
Menu (ESC)

3005 Aluminum vs. AISI 418 Stainless Steel

3005 aluminum belongs to the aluminum alloys classification, while AISI 418 stainless steel belongs to the iron alloys. There are 31 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 3005 aluminum and the bottom bar is AISI 418 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 33 to 73
330
Elastic (Young's, Tensile) Modulus, GPa 70
200
Elongation at Break, % 1.1 to 16
17
Fatigue Strength, MPa 53 to 100
520
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 26
77
Shear Strength, MPa 84 to 150
680
Tensile Strength: Ultimate (UTS), MPa 140 to 270
1100
Tensile Strength: Yield (Proof), MPa 51 to 240
850

Thermal Properties

Latent Heat of Fusion, J/g 400
270
Maximum Temperature: Mechanical, °C 180
770
Melting Completion (Liquidus), °C 660
1500
Melting Onset (Solidus), °C 640
1460
Specific Heat Capacity, J/kg-K 900
470
Thermal Conductivity, W/m-K 160
25
Thermal Expansion, µm/m-K 23
10

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 42
2.8
Electrical Conductivity: Equal Weight (Specific), % IACS 140
3.1

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
15
Density, g/cm3 2.8
8.0
Embodied Carbon, kg CO2/kg material 8.2
2.9
Embodied Energy, MJ/kg 150
41
Embodied Water, L/kg 1180
110

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 2.2 to 18
170
Resilience: Unit (Modulus of Resilience), kJ/m3 18 to 390
1830
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 49
24
Strength to Weight: Axial, points 14 to 27
38
Strength to Weight: Bending, points 21 to 33
29
Thermal Diffusivity, mm2/s 64
6.7
Thermal Shock Resistance, points 6.0 to 12
40

Alloy Composition

Aluminum (Al), % 95.7 to 98.8
0
Carbon (C), % 0
0.15 to 0.2
Chromium (Cr), % 0 to 0.1
12 to 14
Copper (Cu), % 0 to 0.3
0
Iron (Fe), % 0 to 0.7
78.5 to 83.6
Magnesium (Mg), % 0.2 to 0.6
0
Manganese (Mn), % 1.0 to 1.5
0 to 0.5
Molybdenum (Mo), % 0
0 to 0.5
Nickel (Ni), % 0
1.8 to 2.2
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0 to 0.6
0 to 0.5
Sulfur (S), % 0
0 to 0.030
Titanium (Ti), % 0 to 0.1
0
Tungsten (W), % 0
2.5 to 3.5
Zinc (Zn), % 0 to 0.25
0
Residuals, % 0 to 0.15
0