MakeItFrom.com
Menu (ESC)

3005 Aluminum vs. EN 1.3963 Alloy

3005 aluminum belongs to the aluminum alloys classification, while EN 1.3963 alloy belongs to the iron alloys. There are 24 material properties with values for both materials. Properties with values for just one material (7, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 3005 aluminum and the bottom bar is EN 1.3963 alloy.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 70
190
Elongation at Break, % 1.1 to 16
29
Poisson's Ratio 0.33
0.3
Shear Modulus, GPa 26
72
Shear Strength, MPa 84 to 150
290
Tensile Strength: Ultimate (UTS), MPa 140 to 270
440
Tensile Strength: Yield (Proof), MPa 51 to 240
310

Thermal Properties

Latent Heat of Fusion, J/g 400
270
Melting Completion (Liquidus), °C 660
1430
Melting Onset (Solidus), °C 640
1390
Specific Heat Capacity, J/kg-K 900
460
Thermal Expansion, µm/m-K 23
1.6

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
25
Density, g/cm3 2.8
8.2
Embodied Carbon, kg CO2/kg material 8.2
4.8
Embodied Energy, MJ/kg 150
66
Embodied Water, L/kg 1180
110

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 2.2 to 18
110
Resilience: Unit (Modulus of Resilience), kJ/m3 18 to 390
260
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 49
23
Strength to Weight: Axial, points 14 to 27
15
Strength to Weight: Bending, points 21 to 33
16
Thermal Shock Resistance, points 6.0 to 12
110

Alloy Composition

Aluminum (Al), % 95.7 to 98.8
0
Carbon (C), % 0
0 to 0.050
Chromium (Cr), % 0 to 0.1
0 to 0.25
Copper (Cu), % 0 to 0.3
0
Iron (Fe), % 0 to 0.7
60.5 to 64.9
Magnesium (Mg), % 0.2 to 0.6
0
Manganese (Mn), % 1.0 to 1.5
0 to 0.5
Molybdenum (Mo), % 0
0 to 1.0
Nickel (Ni), % 0
35 to 37
Phosphorus (P), % 0
0 to 0.030
Silicon (Si), % 0 to 0.6
0 to 0.5
Sulfur (S), % 0
0.1 to 0.2
Titanium (Ti), % 0 to 0.1
0
Zinc (Zn), % 0 to 0.25
0
Residuals, % 0 to 0.15
0