MakeItFrom.com
Menu (ESC)

3005 Aluminum vs. EN 1.7014 Steel

3005 aluminum belongs to the aluminum alloys classification, while EN 1.7014 steel belongs to the iron alloys. There are 25 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 3005 aluminum and the bottom bar is EN 1.7014 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 33 to 73
140 to 160
Elastic (Young's, Tensile) Modulus, GPa 70
190
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 26
73
Tensile Strength: Ultimate (UTS), MPa 140 to 270
460 to 1390

Thermal Properties

Latent Heat of Fusion, J/g 400
250
Maximum Temperature: Mechanical, °C 180
420
Melting Completion (Liquidus), °C 660
1460
Melting Onset (Solidus), °C 640
1420
Specific Heat Capacity, J/kg-K 900
470
Thermal Conductivity, W/m-K 160
45
Thermal Expansion, µm/m-K 23
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 42
7.2
Electrical Conductivity: Equal Weight (Specific), % IACS 140
8.3

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
2.2
Density, g/cm3 2.8
7.8
Embodied Carbon, kg CO2/kg material 8.2
1.4
Embodied Energy, MJ/kg 150
19
Embodied Water, L/kg 1180
50

Common Calculations

Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 49
24
Strength to Weight: Axial, points 14 to 27
16 to 49
Strength to Weight: Bending, points 21 to 33
17 to 35
Thermal Diffusivity, mm2/s 64
12
Thermal Shock Resistance, points 6.0 to 12
13 to 41

Alloy Composition

Aluminum (Al), % 95.7 to 98.8
0
Carbon (C), % 0
0.14 to 0.2
Chromium (Cr), % 0 to 0.1
0.7 to 1.0
Copper (Cu), % 0 to 0.3
0 to 0.25
Iron (Fe), % 0 to 0.7
97.3 to 98.5
Magnesium (Mg), % 0.2 to 0.6
0
Manganese (Mn), % 1.0 to 1.5
0.6 to 0.9
Phosphorus (P), % 0
0 to 0.025
Silicon (Si), % 0 to 0.6
0 to 0.3
Sulfur (S), % 0
0.020 to 0.040
Titanium (Ti), % 0 to 0.1
0
Zinc (Zn), % 0 to 0.25
0
Residuals, % 0 to 0.15
0