MakeItFrom.com
Menu (ESC)

3005 Aluminum vs. CC331G Bronze

3005 aluminum belongs to the aluminum alloys classification, while CC331G bronze belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 3005 aluminum and the bottom bar is CC331G bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 33 to 73
140
Elastic (Young's, Tensile) Modulus, GPa 70
110
Elongation at Break, % 1.1 to 16
20
Poisson's Ratio 0.33
0.34
Shear Modulus, GPa 26
43
Tensile Strength: Ultimate (UTS), MPa 140 to 270
620
Tensile Strength: Yield (Proof), MPa 51 to 240
240

Thermal Properties

Latent Heat of Fusion, J/g 400
230
Maximum Temperature: Mechanical, °C 180
220
Melting Completion (Liquidus), °C 660
1060
Melting Onset (Solidus), °C 640
1000
Specific Heat Capacity, J/kg-K 900
440
Thermal Conductivity, W/m-K 160
61
Thermal Expansion, µm/m-K 23
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 42
13
Electrical Conductivity: Equal Weight (Specific), % IACS 140
14

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
28
Density, g/cm3 2.8
8.3
Embodied Carbon, kg CO2/kg material 8.2
3.2
Embodied Energy, MJ/kg 150
53
Embodied Water, L/kg 1180
390

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 2.2 to 18
97
Resilience: Unit (Modulus of Resilience), kJ/m3 18 to 390
250
Stiffness to Weight: Axial, points 14
7.6
Stiffness to Weight: Bending, points 49
19
Strength to Weight: Axial, points 14 to 27
21
Strength to Weight: Bending, points 21 to 33
19
Thermal Diffusivity, mm2/s 64
17
Thermal Shock Resistance, points 6.0 to 12
22

Alloy Composition

Aluminum (Al), % 95.7 to 98.8
8.5 to 10.5
Chromium (Cr), % 0 to 0.1
0
Copper (Cu), % 0 to 0.3
83 to 86.5
Iron (Fe), % 0 to 0.7
1.5 to 3.5
Lead (Pb), % 0
0 to 0.1
Magnesium (Mg), % 0.2 to 0.6
0 to 0.050
Manganese (Mn), % 1.0 to 1.5
0 to 1.0
Nickel (Ni), % 0
0 to 1.5
Silicon (Si), % 0 to 0.6
0 to 0.2
Tin (Sn), % 0
0 to 0.2
Titanium (Ti), % 0 to 0.1
0
Zinc (Zn), % 0 to 0.25
0 to 0.5
Residuals, % 0 to 0.15
0