MakeItFrom.com
Menu (ESC)

3005 Aluminum vs. Grade 35 Titanium

3005 aluminum belongs to the aluminum alloys classification, while grade 35 titanium belongs to the titanium alloys. There are 30 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is 3005 aluminum and the bottom bar is grade 35 titanium.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 70
110
Elongation at Break, % 1.1 to 16
5.6
Fatigue Strength, MPa 53 to 100
330
Poisson's Ratio 0.33
0.32
Shear Modulus, GPa 26
41
Shear Strength, MPa 84 to 150
580
Tensile Strength: Ultimate (UTS), MPa 140 to 270
1000
Tensile Strength: Yield (Proof), MPa 51 to 240
630

Thermal Properties

Latent Heat of Fusion, J/g 400
420
Maximum Temperature: Mechanical, °C 180
320
Melting Completion (Liquidus), °C 660
1630
Melting Onset (Solidus), °C 640
1580
Specific Heat Capacity, J/kg-K 900
550
Thermal Conductivity, W/m-K 160
7.4
Thermal Expansion, µm/m-K 23
9.3

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 42
1.1
Electrical Conductivity: Equal Weight (Specific), % IACS 140
2.2

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
37
Density, g/cm3 2.8
4.6
Embodied Carbon, kg CO2/kg material 8.2
33
Embodied Energy, MJ/kg 150
530
Embodied Water, L/kg 1180
170

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 2.2 to 18
49
Resilience: Unit (Modulus of Resilience), kJ/m3 18 to 390
1830
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 49
35
Strength to Weight: Axial, points 14 to 27
61
Strength to Weight: Bending, points 21 to 33
49
Thermal Diffusivity, mm2/s 64
3.0
Thermal Shock Resistance, points 6.0 to 12
70

Alloy Composition

Aluminum (Al), % 95.7 to 98.8
4.0 to 5.0
Carbon (C), % 0
0 to 0.080
Chromium (Cr), % 0 to 0.1
0
Copper (Cu), % 0 to 0.3
0
Hydrogen (H), % 0
0 to 0.015
Iron (Fe), % 0 to 0.7
0.2 to 0.8
Magnesium (Mg), % 0.2 to 0.6
0
Manganese (Mn), % 1.0 to 1.5
0
Molybdenum (Mo), % 0
1.5 to 2.5
Nitrogen (N), % 0
0 to 0.050
Oxygen (O), % 0
0 to 0.25
Silicon (Si), % 0 to 0.6
0.2 to 0.4
Titanium (Ti), % 0 to 0.1
88.4 to 93
Vanadium (V), % 0
1.1 to 2.1
Zinc (Zn), % 0 to 0.25
0
Residuals, % 0
0 to 0.4