MakeItFrom.com
Menu (ESC)

3005 Aluminum vs. Grade VDC Steel

3005 aluminum belongs to the aluminum alloys classification, while grade VDC steel belongs to the iron alloys. There are 25 material properties with values for both materials. Properties with values for just one material (7, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 3005 aluminum and the bottom bar is grade VDC steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 33 to 73
510
Elastic (Young's, Tensile) Modulus, GPa 70
190
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 26
80
Tensile Strength: Ultimate (UTS), MPa 140 to 270
1700

Thermal Properties

Latent Heat of Fusion, J/g 400
250
Maximum Temperature: Mechanical, °C 180
400
Melting Completion (Liquidus), °C 660
1450
Melting Onset (Solidus), °C 640
1410
Specific Heat Capacity, J/kg-K 900
470
Thermal Conductivity, W/m-K 160
51
Thermal Expansion, µm/m-K 23
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 42
7.1
Electrical Conductivity: Equal Weight (Specific), % IACS 140
8.1

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
1.9
Density, g/cm3 2.8
7.8
Embodied Carbon, kg CO2/kg material 8.2
1.4
Embodied Energy, MJ/kg 150
19
Embodied Water, L/kg 1180
47

Common Calculations

Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 49
24
Strength to Weight: Axial, points 14 to 27
60
Strength to Weight: Bending, points 21 to 33
40
Thermal Diffusivity, mm2/s 64
14
Thermal Shock Resistance, points 6.0 to 12
50

Alloy Composition

Aluminum (Al), % 95.7 to 98.8
0
Carbon (C), % 0
0.6 to 0.75
Chromium (Cr), % 0 to 0.1
0 to 0.3
Copper (Cu), % 0 to 0.3
0 to 0.060
Iron (Fe), % 0 to 0.7
98.3 to 99.35
Magnesium (Mg), % 0.2 to 0.6
0
Manganese (Mn), % 1.0 to 1.5
0.5 to 1.0
Phosphorus (P), % 0
0 to 0.020
Silicon (Si), % 0 to 0.6
0.15 to 0.3
Sulfur (S), % 0
0 to 0.020
Titanium (Ti), % 0 to 0.1
0
Zinc (Zn), % 0 to 0.25
0
Residuals, % 0 to 0.15
0