MakeItFrom.com
Menu (ESC)

3005-O Aluminum vs. Annealed AISI 440A

3005-O aluminum belongs to the aluminum alloys classification, while annealed AISI 440A belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 3005-O aluminum and the bottom bar is annealed AISI 440A.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 70
200
Elongation at Break, % 16
20
Fatigue Strength, MPa 53
270
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 26
77
Shear Strength, MPa 84
450
Tensile Strength: Ultimate (UTS), MPa 140
730
Tensile Strength: Yield (Proof), MPa 51
420

Thermal Properties

Latent Heat of Fusion, J/g 400
280
Maximum Temperature: Mechanical, °C 180
760
Melting Completion (Liquidus), °C 660
1480
Melting Onset (Solidus), °C 640
1370
Specific Heat Capacity, J/kg-K 900
480
Thermal Conductivity, W/m-K 160
23
Thermal Expansion, µm/m-K 23
10

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 42
2.5
Electrical Conductivity: Equal Weight (Specific), % IACS 140
2.9

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
9.0
Density, g/cm3 2.8
7.7
Embodied Carbon, kg CO2/kg material 8.2
2.2
Embodied Energy, MJ/kg 150
31
Embodied Water, L/kg 1180
120

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 18
120
Resilience: Unit (Modulus of Resilience), kJ/m3 18
440
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 49
25
Strength to Weight: Axial, points 14
26
Strength to Weight: Bending, points 21
23
Thermal Diffusivity, mm2/s 64
6.2
Thermal Shock Resistance, points 6.0
26

Alloy Composition

Aluminum (Al), % 95.7 to 98.8
0
Carbon (C), % 0
0.6 to 0.75
Chromium (Cr), % 0 to 0.1
16 to 18
Copper (Cu), % 0 to 0.3
0
Iron (Fe), % 0 to 0.7
78.4 to 83.4
Magnesium (Mg), % 0.2 to 0.6
0
Manganese (Mn), % 1.0 to 1.5
0 to 1.0
Molybdenum (Mo), % 0
0 to 0.75
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0 to 0.6
0 to 1.0
Sulfur (S), % 0
0 to 0.015
Titanium (Ti), % 0 to 0.1
0
Zinc (Zn), % 0 to 0.25
0
Residuals, % 0 to 0.15
0