MakeItFrom.com
Menu (ESC)

308.0 Aluminum vs. 7049A Aluminum

Both 308.0 aluminum and 7049A aluminum are aluminum alloys. They have a moderately high 90% of their average alloy composition in common. There are 30 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is 308.0 aluminum and the bottom bar is 7049A aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 73
71
Elongation at Break, % 2.0
5.0 to 5.7
Fatigue Strength, MPa 89
180
Poisson's Ratio 0.33
0.32
Shear Modulus, GPa 27
27
Shear Strength, MPa 150
340 to 350
Tensile Strength: Ultimate (UTS), MPa 190
580 to 590
Tensile Strength: Yield (Proof), MPa 110
500 to 530

Thermal Properties

Latent Heat of Fusion, J/g 470
370
Maximum Temperature: Mechanical, °C 170
200
Melting Completion (Liquidus), °C 620
640
Melting Onset (Solidus), °C 540
430
Specific Heat Capacity, J/kg-K 870
850
Thermal Conductivity, W/m-K 140
130
Thermal Expansion, µm/m-K 20
24

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 37
40
Electrical Conductivity: Equal Weight (Specific), % IACS 110
120

Otherwise Unclassified Properties

Base Metal Price, % relative 10
10
Density, g/cm3 2.9
3.1
Embodied Carbon, kg CO2/kg material 7.7
8.2
Embodied Energy, MJ/kg 140
150
Embodied Water, L/kg 1080
1100

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 3.3
28 to 32
Resilience: Unit (Modulus of Resilience), kJ/m3 83
1800 to 1990
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 47
44
Strength to Weight: Axial, points 18
52 to 53
Strength to Weight: Bending, points 25
50 to 51
Thermal Diffusivity, mm2/s 55
50
Thermal Shock Resistance, points 9.2
25

Alloy Composition

Aluminum (Al), % 85.7 to 91
84.6 to 89.5
Chromium (Cr), % 0
0.050 to 0.25
Copper (Cu), % 4.0 to 5.0
1.2 to 1.9
Iron (Fe), % 0 to 1.0
0 to 0.5
Magnesium (Mg), % 0 to 0.1
2.1 to 3.1
Manganese (Mn), % 0 to 0.5
0 to 0.5
Silicon (Si), % 5.0 to 6.0
0 to 0.4
Titanium (Ti), % 0 to 0.25
0 to 0.25
Zinc (Zn), % 0 to 1.0
7.2 to 8.4
Zirconium (Zr), % 0
0 to 0.25
Residuals, % 0
0 to 0.15