MakeItFrom.com
Menu (ESC)

308.0 Aluminum vs. ACI-ASTM CN7M Steel

308.0 aluminum belongs to the aluminum alloys classification, while ACI-ASTM CN7M steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 308.0 aluminum and the bottom bar is ACI-ASTM CN7M steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 70
140
Elastic (Young's, Tensile) Modulus, GPa 73
200
Elongation at Break, % 2.0
44
Fatigue Strength, MPa 89
190
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 27
77
Tensile Strength: Ultimate (UTS), MPa 190
480
Tensile Strength: Yield (Proof), MPa 110
200

Thermal Properties

Latent Heat of Fusion, J/g 470
310
Maximum Temperature: Mechanical, °C 170
1100
Melting Completion (Liquidus), °C 620
1410
Melting Onset (Solidus), °C 540
1450
Specific Heat Capacity, J/kg-K 870
470
Thermal Conductivity, W/m-K 140
21
Thermal Expansion, µm/m-K 20
15

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 37
1.6
Electrical Conductivity: Equal Weight (Specific), % IACS 110
1.8

Otherwise Unclassified Properties

Base Metal Price, % relative 10
32
Density, g/cm3 2.9
8.1
Embodied Carbon, kg CO2/kg material 7.7
5.6
Embodied Energy, MJ/kg 140
78
Embodied Water, L/kg 1080
210

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 3.3
170
Resilience: Unit (Modulus of Resilience), kJ/m3 83
110
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 47
24
Strength to Weight: Axial, points 18
17
Strength to Weight: Bending, points 25
17
Thermal Diffusivity, mm2/s 55
5.6
Thermal Shock Resistance, points 9.2
12

Alloy Composition

Aluminum (Al), % 85.7 to 91
0
Carbon (C), % 0
0 to 0.070
Chromium (Cr), % 0
19 to 22
Copper (Cu), % 4.0 to 5.0
3.0 to 4.0
Iron (Fe), % 0 to 1.0
37.4 to 48.5
Magnesium (Mg), % 0 to 0.1
0
Manganese (Mn), % 0 to 0.5
0 to 1.5
Molybdenum (Mo), % 0
2.0 to 3.0
Nickel (Ni), % 0
27.5 to 30.5
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 5.0 to 6.0
0 to 1.5
Sulfur (S), % 0
0 to 0.040
Titanium (Ti), % 0 to 0.25
0
Zinc (Zn), % 0 to 1.0
0
Residuals, % 0 to 0.5
0