MakeItFrom.com
Menu (ESC)

308.0 Aluminum vs. AISI 405 Stainless Steel

308.0 aluminum belongs to the aluminum alloys classification, while AISI 405 stainless steel belongs to the iron alloys. There are 32 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 308.0 aluminum and the bottom bar is AISI 405 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 70
170
Elastic (Young's, Tensile) Modulus, GPa 73
190
Elongation at Break, % 2.0
22
Fatigue Strength, MPa 89
130
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 27
76
Shear Strength, MPa 150
300
Tensile Strength: Ultimate (UTS), MPa 190
470
Tensile Strength: Yield (Proof), MPa 110
200

Thermal Properties

Latent Heat of Fusion, J/g 470
280
Maximum Temperature: Mechanical, °C 170
820
Melting Completion (Liquidus), °C 620
1530
Melting Onset (Solidus), °C 540
1480
Specific Heat Capacity, J/kg-K 870
480
Thermal Conductivity, W/m-K 140
30
Thermal Expansion, µm/m-K 20
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 37
2.9
Electrical Conductivity: Equal Weight (Specific), % IACS 110
3.3

Otherwise Unclassified Properties

Base Metal Price, % relative 10
7.0
Calomel Potential, mV -660
-210
Density, g/cm3 2.9
7.7
Embodied Carbon, kg CO2/kg material 7.7
2.0
Embodied Energy, MJ/kg 140
28
Embodied Water, L/kg 1080
100

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 3.3
84
Resilience: Unit (Modulus of Resilience), kJ/m3 83
100
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 47
25
Strength to Weight: Axial, points 18
17
Strength to Weight: Bending, points 25
17
Thermal Diffusivity, mm2/s 55
8.1
Thermal Shock Resistance, points 9.2
16

Alloy Composition

Aluminum (Al), % 85.7 to 91
0.1 to 0.3
Carbon (C), % 0
0 to 0.080
Chromium (Cr), % 0
11.5 to 14.5
Copper (Cu), % 4.0 to 5.0
0
Iron (Fe), % 0 to 1.0
82.5 to 88.4
Magnesium (Mg), % 0 to 0.1
0
Manganese (Mn), % 0 to 0.5
0 to 1.0
Nickel (Ni), % 0
0 to 0.6
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 5.0 to 6.0
0 to 1.0
Sulfur (S), % 0
0 to 0.030
Titanium (Ti), % 0 to 0.25
0
Zinc (Zn), % 0 to 1.0
0
Residuals, % 0 to 0.5
0