MakeItFrom.com
Menu (ESC)

308.0 Aluminum vs. ASTM A182 Grade F10

308.0 aluminum belongs to the aluminum alloys classification, while ASTM A182 grade F10 belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 308.0 aluminum and the bottom bar is ASTM A182 grade F10.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 70
190
Elastic (Young's, Tensile) Modulus, GPa 73
190
Elongation at Break, % 2.0
34
Fatigue Strength, MPa 89
180
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 27
74
Shear Strength, MPa 150
420
Tensile Strength: Ultimate (UTS), MPa 190
630
Tensile Strength: Yield (Proof), MPa 110
230

Thermal Properties

Latent Heat of Fusion, J/g 470
290
Maximum Temperature: Mechanical, °C 170
600
Melting Completion (Liquidus), °C 620
1420
Melting Onset (Solidus), °C 540
1370
Specific Heat Capacity, J/kg-K 870
470
Thermal Expansion, µm/m-K 20
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 37
15
Electrical Conductivity: Equal Weight (Specific), % IACS 110
17

Otherwise Unclassified Properties

Base Metal Price, % relative 10
18
Density, g/cm3 2.9
7.9
Embodied Carbon, kg CO2/kg material 7.7
3.6
Embodied Energy, MJ/kg 140
51
Embodied Water, L/kg 1080
120

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 3.3
170
Resilience: Unit (Modulus of Resilience), kJ/m3 83
140
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 47
24
Strength to Weight: Axial, points 18
22
Strength to Weight: Bending, points 25
21
Thermal Shock Resistance, points 9.2
18

Alloy Composition

Aluminum (Al), % 85.7 to 91
0
Carbon (C), % 0
0.1 to 0.2
Chromium (Cr), % 0
7.0 to 9.0
Copper (Cu), % 4.0 to 5.0
0
Iron (Fe), % 0 to 1.0
66.5 to 72.4
Magnesium (Mg), % 0 to 0.1
0
Manganese (Mn), % 0 to 0.5
0.5 to 0.8
Nickel (Ni), % 0
19 to 22
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 5.0 to 6.0
1.0 to 1.4
Sulfur (S), % 0
0 to 0.030
Titanium (Ti), % 0 to 0.25
0
Zinc (Zn), % 0 to 1.0
0
Residuals, % 0 to 0.5
0