MakeItFrom.com
Menu (ESC)

308.0 Aluminum vs. EN 1.0045 Steel

308.0 aluminum belongs to the aluminum alloys classification, while EN 1.0045 steel belongs to the iron alloys. There are 31 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 308.0 aluminum and the bottom bar is EN 1.0045 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 70
150
Elastic (Young's, Tensile) Modulus, GPa 73
190
Elongation at Break, % 2.0
20
Fatigue Strength, MPa 89
230
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 27
73
Shear Strength, MPa 150
330
Tensile Strength: Ultimate (UTS), MPa 190
530
Tensile Strength: Yield (Proof), MPa 110
330

Thermal Properties

Latent Heat of Fusion, J/g 470
250
Maximum Temperature: Mechanical, °C 170
400
Melting Completion (Liquidus), °C 620
1460
Melting Onset (Solidus), °C 540
1420
Specific Heat Capacity, J/kg-K 870
470
Thermal Conductivity, W/m-K 140
50
Thermal Expansion, µm/m-K 20
12

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 37
7.3
Electrical Conductivity: Equal Weight (Specific), % IACS 110
8.4

Otherwise Unclassified Properties

Base Metal Price, % relative 10
1.9
Density, g/cm3 2.9
7.8
Embodied Carbon, kg CO2/kg material 7.7
1.4
Embodied Energy, MJ/kg 140
19
Embodied Water, L/kg 1080
47

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 3.3
93
Resilience: Unit (Modulus of Resilience), kJ/m3 83
290
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 47
24
Strength to Weight: Axial, points 18
19
Strength to Weight: Bending, points 25
18
Thermal Diffusivity, mm2/s 55
14
Thermal Shock Resistance, points 9.2
17

Alloy Composition

Aluminum (Al), % 85.7 to 91
0
Carbon (C), % 0
0 to 0.27
Copper (Cu), % 4.0 to 5.0
0 to 0.6
Iron (Fe), % 0 to 1.0
96.7 to 100
Magnesium (Mg), % 0 to 0.1
0
Manganese (Mn), % 0 to 0.5
0 to 1.7
Nitrogen (N), % 0
0 to 0.014
Phosphorus (P), % 0
0 to 0.045
Silicon (Si), % 5.0 to 6.0
0 to 0.6
Sulfur (S), % 0
0 to 0.045
Titanium (Ti), % 0 to 0.25
0
Zinc (Zn), % 0 to 1.0
0
Residuals, % 0 to 0.5
0