MakeItFrom.com
Menu (ESC)

308.0 Aluminum vs. EN 1.1127 Steel

308.0 aluminum belongs to the aluminum alloys classification, while EN 1.1127 steel belongs to the iron alloys. There are 31 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 308.0 aluminum and the bottom bar is EN 1.1127 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 70
190 to 230
Elastic (Young's, Tensile) Modulus, GPa 73
190
Elongation at Break, % 2.0
14 to 25
Fatigue Strength, MPa 89
280 to 370
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 27
73
Shear Strength, MPa 150
420 to 480
Tensile Strength: Ultimate (UTS), MPa 190
660 to 790
Tensile Strength: Yield (Proof), MPa 110
410 to 580

Thermal Properties

Latent Heat of Fusion, J/g 470
250
Maximum Temperature: Mechanical, °C 170
400
Melting Completion (Liquidus), °C 620
1460
Melting Onset (Solidus), °C 540
1410
Specific Heat Capacity, J/kg-K 870
470
Thermal Conductivity, W/m-K 140
49
Thermal Expansion, µm/m-K 20
12

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 37
7.3
Electrical Conductivity: Equal Weight (Specific), % IACS 110
8.4

Otherwise Unclassified Properties

Base Metal Price, % relative 10
2.1
Density, g/cm3 2.9
7.8
Embodied Carbon, kg CO2/kg material 7.7
1.5
Embodied Energy, MJ/kg 140
19
Embodied Water, L/kg 1080
49

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 3.3
90 to 140
Resilience: Unit (Modulus of Resilience), kJ/m3 83
440 to 880
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 47
24
Strength to Weight: Axial, points 18
23 to 28
Strength to Weight: Bending, points 25
22 to 24
Thermal Diffusivity, mm2/s 55
13
Thermal Shock Resistance, points 9.2
21 to 25

Alloy Composition

Aluminum (Al), % 85.7 to 91
0
Carbon (C), % 0
0.34 to 0.42
Chromium (Cr), % 0
0 to 0.4
Copper (Cu), % 4.0 to 5.0
0
Iron (Fe), % 0 to 1.0
96.6 to 98.1
Magnesium (Mg), % 0 to 0.1
0
Manganese (Mn), % 0 to 0.5
1.4 to 1.7
Molybdenum (Mo), % 0
0 to 0.1
Nickel (Ni), % 0
0 to 0.4
Phosphorus (P), % 0
0 to 0.035
Silicon (Si), % 5.0 to 6.0
0.15 to 0.35
Sulfur (S), % 0
0 to 0.035
Titanium (Ti), % 0 to 0.25
0
Zinc (Zn), % 0 to 1.0
0
Residuals, % 0 to 0.5
0