MakeItFrom.com
Menu (ESC)

308.0 Aluminum vs. EN 1.3542 Stainless Steel

308.0 aluminum belongs to the aluminum alloys classification, while EN 1.3542 stainless steel belongs to the iron alloys. There are 25 material properties with values for both materials. Properties with values for just one material (9, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 308.0 aluminum and the bottom bar is EN 1.3542 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 70
220
Elastic (Young's, Tensile) Modulus, GPa 73
190
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 27
76
Tensile Strength: Ultimate (UTS), MPa 190
720

Thermal Properties

Latent Heat of Fusion, J/g 470
270
Maximum Temperature: Mechanical, °C 170
770
Melting Completion (Liquidus), °C 620
1440
Melting Onset (Solidus), °C 540
1390
Specific Heat Capacity, J/kg-K 870
480
Thermal Conductivity, W/m-K 140
29
Thermal Expansion, µm/m-K 20
10

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 37
3.1
Electrical Conductivity: Equal Weight (Specific), % IACS 110
3.6

Otherwise Unclassified Properties

Base Metal Price, % relative 10
7.5
Density, g/cm3 2.9
7.7
Embodied Carbon, kg CO2/kg material 7.7
2.0
Embodied Energy, MJ/kg 140
29
Embodied Water, L/kg 1080
100

Common Calculations

Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 47
25
Strength to Weight: Axial, points 18
26
Strength to Weight: Bending, points 25
23
Thermal Diffusivity, mm2/s 55
7.9
Thermal Shock Resistance, points 9.2
26

Alloy Composition

Aluminum (Al), % 85.7 to 91
0
Carbon (C), % 0
0.6 to 0.7
Chromium (Cr), % 0
12.5 to 14.5
Copper (Cu), % 4.0 to 5.0
0
Iron (Fe), % 0 to 1.0
82.7 to 87.5
Magnesium (Mg), % 0 to 0.1
0
Manganese (Mn), % 0 to 0.5
0 to 1.0
Molybdenum (Mo), % 0
0 to 0.75
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 5.0 to 6.0
0 to 1.0
Sulfur (S), % 0
0 to 0.030
Titanium (Ti), % 0 to 0.25
0
Zinc (Zn), % 0 to 1.0
0
Residuals, % 0 to 0.5
0