MakeItFrom.com
Menu (ESC)

308.0 Aluminum vs. EN AC-48100 Aluminum

Both 308.0 aluminum and EN AC-48100 aluminum are aluminum alloys. They have 88% of their average alloy composition in common. There are 30 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is 308.0 aluminum and the bottom bar is EN AC-48100 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 70
100 to 140
Elastic (Young's, Tensile) Modulus, GPa 73
76
Elongation at Break, % 2.0
1.1
Fatigue Strength, MPa 89
120 to 130
Poisson's Ratio 0.33
0.33
Shear Modulus, GPa 27
29
Tensile Strength: Ultimate (UTS), MPa 190
240 to 330
Tensile Strength: Yield (Proof), MPa 110
190 to 300

Thermal Properties

Latent Heat of Fusion, J/g 470
640
Maximum Temperature: Mechanical, °C 170
170
Melting Completion (Liquidus), °C 620
580
Melting Onset (Solidus), °C 540
470
Specific Heat Capacity, J/kg-K 870
880
Thermal Conductivity, W/m-K 140
130
Thermal Expansion, µm/m-K 20
20

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 37
27
Electrical Conductivity: Equal Weight (Specific), % IACS 110
87

Otherwise Unclassified Properties

Base Metal Price, % relative 10
11
Density, g/cm3 2.9
2.8
Embodied Carbon, kg CO2/kg material 7.7
7.3
Embodied Energy, MJ/kg 140
130
Embodied Water, L/kg 1080
940

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 3.3
2.3 to 3.6
Resilience: Unit (Modulus of Resilience), kJ/m3 83
250 to 580
Stiffness to Weight: Axial, points 14
15
Stiffness to Weight: Bending, points 47
51
Strength to Weight: Axial, points 18
24 to 33
Strength to Weight: Bending, points 25
31 to 38
Thermal Diffusivity, mm2/s 55
55
Thermal Shock Resistance, points 9.2
11 to 16

Alloy Composition

Aluminum (Al), % 85.7 to 91
72.1 to 79.8
Copper (Cu), % 4.0 to 5.0
4.0 to 5.0
Iron (Fe), % 0 to 1.0
0 to 1.3
Magnesium (Mg), % 0 to 0.1
0.25 to 0.65
Manganese (Mn), % 0 to 0.5
0 to 0.5
Nickel (Ni), % 0
0 to 0.3
Silicon (Si), % 5.0 to 6.0
16 to 18
Tin (Sn), % 0
0 to 0.15
Titanium (Ti), % 0 to 0.25
0 to 0.25
Zinc (Zn), % 0 to 1.0
0 to 1.5
Residuals, % 0
0 to 0.25