MakeItFrom.com
Menu (ESC)

308.0 Aluminum vs. C44300 Brass

308.0 aluminum belongs to the aluminum alloys classification, while C44300 brass belongs to the copper alloys. There are 26 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 308.0 aluminum and the bottom bar is C44300 brass.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 73
110
Poisson's Ratio 0.33
0.32
Shear Modulus, GPa 27
41
Tensile Strength: Ultimate (UTS), MPa 190
350
Tensile Strength: Yield (Proof), MPa 110
120

Thermal Properties

Latent Heat of Fusion, J/g 470
180
Maximum Temperature: Mechanical, °C 170
140
Melting Completion (Liquidus), °C 620
940
Melting Onset (Solidus), °C 540
900
Specific Heat Capacity, J/kg-K 870
380
Thermal Conductivity, W/m-K 140
110
Thermal Expansion, µm/m-K 20
20

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 37
25
Electrical Conductivity: Equal Weight (Specific), % IACS 110
27

Otherwise Unclassified Properties

Base Metal Price, % relative 10
26
Density, g/cm3 2.9
8.3
Embodied Carbon, kg CO2/kg material 7.7
2.8
Embodied Energy, MJ/kg 140
46
Embodied Water, L/kg 1080
330

Common Calculations

Resilience: Unit (Modulus of Resilience), kJ/m3 83
65
Stiffness to Weight: Axial, points 14
7.2
Stiffness to Weight: Bending, points 47
19
Strength to Weight: Axial, points 18
12
Strength to Weight: Bending, points 25
13
Thermal Diffusivity, mm2/s 55
35
Thermal Shock Resistance, points 9.2
12

Alloy Composition

Aluminum (Al), % 85.7 to 91
0
Arsenic (As), % 0
0.020 to 0.060
Copper (Cu), % 4.0 to 5.0
70 to 73
Iron (Fe), % 0 to 1.0
0 to 0.060
Lead (Pb), % 0
0 to 0.070
Magnesium (Mg), % 0 to 0.1
0
Manganese (Mn), % 0 to 0.5
0
Silicon (Si), % 5.0 to 6.0
0
Tin (Sn), % 0
0.9 to 1.2
Titanium (Ti), % 0 to 0.25
0
Zinc (Zn), % 0 to 1.0
25.2 to 29.1
Residuals, % 0
0 to 0.4