MakeItFrom.com
Menu (ESC)

308.0 Aluminum vs. S39274 Stainless Steel

308.0 aluminum belongs to the aluminum alloys classification, while S39274 stainless steel belongs to the iron alloys. There are 31 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 308.0 aluminum and the bottom bar is S39274 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 70
270
Elastic (Young's, Tensile) Modulus, GPa 73
210
Elongation at Break, % 2.0
17
Fatigue Strength, MPa 89
380
Poisson's Ratio 0.33
0.27
Shear Modulus, GPa 27
81
Shear Strength, MPa 150
560
Tensile Strength: Ultimate (UTS), MPa 190
900
Tensile Strength: Yield (Proof), MPa 110
620

Thermal Properties

Latent Heat of Fusion, J/g 470
300
Maximum Temperature: Mechanical, °C 170
1100
Melting Completion (Liquidus), °C 620
1480
Melting Onset (Solidus), °C 540
1430
Specific Heat Capacity, J/kg-K 870
470
Thermal Conductivity, W/m-K 140
16
Thermal Expansion, µm/m-K 20
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 37
2.2
Electrical Conductivity: Equal Weight (Specific), % IACS 110
2.4

Otherwise Unclassified Properties

Base Metal Price, % relative 10
24
Density, g/cm3 2.9
8.0
Embodied Carbon, kg CO2/kg material 7.7
4.3
Embodied Energy, MJ/kg 140
60
Embodied Water, L/kg 1080
180

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 3.3
140
Resilience: Unit (Modulus of Resilience), kJ/m3 83
940
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 47
25
Strength to Weight: Axial, points 18
32
Strength to Weight: Bending, points 25
26
Thermal Diffusivity, mm2/s 55
4.2
Thermal Shock Resistance, points 9.2
25

Alloy Composition

Aluminum (Al), % 85.7 to 91
0
Carbon (C), % 0
0 to 0.030
Chromium (Cr), % 0
24 to 26
Copper (Cu), % 4.0 to 5.0
0.2 to 0.8
Iron (Fe), % 0 to 1.0
57 to 65.6
Magnesium (Mg), % 0 to 0.1
0
Manganese (Mn), % 0 to 0.5
0 to 1.0
Molybdenum (Mo), % 0
2.5 to 3.5
Nickel (Ni), % 0
6.0 to 8.0
Nitrogen (N), % 0
0.24 to 0.32
Phosphorus (P), % 0
0 to 0.030
Silicon (Si), % 5.0 to 6.0
0 to 0.8
Sulfur (S), % 0
0 to 0.020
Titanium (Ti), % 0 to 0.25
0
Tungsten (W), % 0
1.5 to 2.5
Zinc (Zn), % 0 to 1.0
0
Residuals, % 0 to 0.5
0