MakeItFrom.com
Menu (ESC)

308.0 Aluminum vs. S40930 Stainless Steel

308.0 aluminum belongs to the aluminum alloys classification, while S40930 stainless steel belongs to the iron alloys. There are 31 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 308.0 aluminum and the bottom bar is S40930 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 70
160
Elastic (Young's, Tensile) Modulus, GPa 73
190
Elongation at Break, % 2.0
23
Fatigue Strength, MPa 89
130
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 27
75
Shear Strength, MPa 150
270
Tensile Strength: Ultimate (UTS), MPa 190
430
Tensile Strength: Yield (Proof), MPa 110
190

Thermal Properties

Latent Heat of Fusion, J/g 470
270
Maximum Temperature: Mechanical, °C 170
710
Melting Completion (Liquidus), °C 620
1450
Melting Onset (Solidus), °C 540
1410
Specific Heat Capacity, J/kg-K 870
480
Thermal Conductivity, W/m-K 140
25
Thermal Expansion, µm/m-K 20
10

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 37
2.9
Electrical Conductivity: Equal Weight (Specific), % IACS 110
3.3

Otherwise Unclassified Properties

Base Metal Price, % relative 10
8.5
Density, g/cm3 2.9
7.8
Embodied Carbon, kg CO2/kg material 7.7
2.3
Embodied Energy, MJ/kg 140
32
Embodied Water, L/kg 1080
94

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 3.3
80
Resilience: Unit (Modulus of Resilience), kJ/m3 83
94
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 47
25
Strength to Weight: Axial, points 18
16
Strength to Weight: Bending, points 25
16
Thermal Diffusivity, mm2/s 55
6.7
Thermal Shock Resistance, points 9.2
16

Alloy Composition

Aluminum (Al), % 85.7 to 91
0
Carbon (C), % 0
0 to 0.030
Chromium (Cr), % 0
10.5 to 11.7
Copper (Cu), % 4.0 to 5.0
0
Iron (Fe), % 0 to 1.0
84.7 to 89.4
Magnesium (Mg), % 0 to 0.1
0
Manganese (Mn), % 0 to 0.5
0 to 1.0
Nickel (Ni), % 0
0 to 0.5
Niobium (Nb), % 0
0.080 to 0.75
Nitrogen (N), % 0
0 to 0.030
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 5.0 to 6.0
0 to 1.0
Sulfur (S), % 0
0 to 0.020
Titanium (Ti), % 0 to 0.25
0.050 to 0.2
Zinc (Zn), % 0 to 1.0
0
Residuals, % 0 to 0.5
0