MakeItFrom.com
Menu (ESC)

3102 Aluminum vs. AISI 418 Stainless Steel

3102 aluminum belongs to the aluminum alloys classification, while AISI 418 stainless steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 3102 aluminum and the bottom bar is AISI 418 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 69
200
Elongation at Break, % 23 to 28
17
Fatigue Strength, MPa 31 to 34
520
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 26
77
Shear Strength, MPa 58 to 65
680
Tensile Strength: Ultimate (UTS), MPa 92 to 100
1100
Tensile Strength: Yield (Proof), MPa 28 to 34
850

Thermal Properties

Latent Heat of Fusion, J/g 400
270
Maximum Temperature: Mechanical, °C 180
770
Melting Completion (Liquidus), °C 640
1500
Melting Onset (Solidus), °C 640
1460
Specific Heat Capacity, J/kg-K 900
470
Thermal Conductivity, W/m-K 230
25
Thermal Expansion, µm/m-K 23
10

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 56
2.8
Electrical Conductivity: Equal Weight (Specific), % IACS 190
3.1

Otherwise Unclassified Properties

Base Metal Price, % relative 9.0
15
Density, g/cm3 2.7
8.0
Embodied Carbon, kg CO2/kg material 8.2
2.9
Embodied Energy, MJ/kg 150
41
Embodied Water, L/kg 1190
110

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 16 to 22
170
Resilience: Unit (Modulus of Resilience), kJ/m3 5.8 to 8.3
1830
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 50
24
Strength to Weight: Axial, points 9.4 to 10
38
Strength to Weight: Bending, points 17 to 18
29
Thermal Diffusivity, mm2/s 92
6.7
Thermal Shock Resistance, points 4.1 to 4.4
40

Alloy Composition

Aluminum (Al), % 97.9 to 99.95
0
Carbon (C), % 0
0.15 to 0.2
Chromium (Cr), % 0
12 to 14
Copper (Cu), % 0 to 0.1
0
Iron (Fe), % 0 to 0.7
78.5 to 83.6
Manganese (Mn), % 0.050 to 0.4
0 to 0.5
Molybdenum (Mo), % 0
0 to 0.5
Nickel (Ni), % 0
1.8 to 2.2
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0 to 0.4
0 to 0.5
Sulfur (S), % 0
0 to 0.030
Titanium (Ti), % 0 to 0.1
0
Tungsten (W), % 0
2.5 to 3.5
Zinc (Zn), % 0 to 0.3
0
Residuals, % 0 to 0.15
0