MakeItFrom.com
Menu (ESC)

3102 Aluminum vs. AWS E80C-B6

3102 aluminum belongs to the aluminum alloys classification, while AWS E80C-B6 belongs to the iron alloys. There are 27 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 3102 aluminum and the bottom bar is AWS E80C-B6.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 69
190
Elongation at Break, % 23 to 28
19
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 26
74
Tensile Strength: Ultimate (UTS), MPa 92 to 100
630
Tensile Strength: Yield (Proof), MPa 28 to 34
530

Thermal Properties

Latent Heat of Fusion, J/g 400
260
Melting Completion (Liquidus), °C 640
1450
Melting Onset (Solidus), °C 640
1410
Specific Heat Capacity, J/kg-K 900
470
Thermal Conductivity, W/m-K 230
39
Thermal Expansion, µm/m-K 23
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 56
8.2
Electrical Conductivity: Equal Weight (Specific), % IACS 190
9.5

Otherwise Unclassified Properties

Base Metal Price, % relative 9.0
4.7
Density, g/cm3 2.7
7.8
Embodied Carbon, kg CO2/kg material 8.2
1.8
Embodied Energy, MJ/kg 150
25
Embodied Water, L/kg 1190
71

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 16 to 22
120
Resilience: Unit (Modulus of Resilience), kJ/m3 5.8 to 8.3
730
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 50
25
Strength to Weight: Axial, points 9.4 to 10
22
Strength to Weight: Bending, points 17 to 18
21
Thermal Diffusivity, mm2/s 92
11
Thermal Shock Resistance, points 4.1 to 4.4
18

Alloy Composition

Aluminum (Al), % 97.9 to 99.95
0
Carbon (C), % 0
0 to 0.1
Chromium (Cr), % 0
4.5 to 6.0
Copper (Cu), % 0 to 0.1
0 to 0.35
Iron (Fe), % 0 to 0.7
90.1 to 94.4
Manganese (Mn), % 0.050 to 0.4
0.4 to 1.0
Molybdenum (Mo), % 0
0.45 to 0.65
Nickel (Ni), % 0
0 to 0.6
Phosphorus (P), % 0
0 to 0.025
Silicon (Si), % 0 to 0.4
0.25 to 0.6
Sulfur (S), % 0
0 to 0.025
Titanium (Ti), % 0 to 0.1
0
Vanadium (V), % 0
0 to 0.030
Zinc (Zn), % 0 to 0.3
0
Residuals, % 0
0 to 0.5