MakeItFrom.com
Menu (ESC)

3103 Aluminum vs. 2124 Aluminum

Both 3103 aluminum and 2124 aluminum are aluminum alloys. They have a moderately high 94% of their average alloy composition in common. There are 30 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown.

For each property being compared, the top bar is 3103 aluminum and the bottom bar is 2124 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 70
71
Elongation at Break, % 1.1 to 28
5.7
Fatigue Strength, MPa 38 to 83
130
Poisson's Ratio 0.33
0.33
Shear Modulus, GPa 26
27
Shear Strength, MPa 68 to 130
280
Tensile Strength: Ultimate (UTS), MPa 100 to 220
490
Tensile Strength: Yield (Proof), MPa 39 to 200
430

Thermal Properties

Latent Heat of Fusion, J/g 400
390
Maximum Temperature: Mechanical, °C 190
190
Melting Completion (Liquidus), °C 660
640
Melting Onset (Solidus), °C 640
500
Specific Heat Capacity, J/kg-K 900
880
Thermal Conductivity, W/m-K 160
150
Thermal Expansion, µm/m-K 23
23

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 42
38
Electrical Conductivity: Equal Weight (Specific), % IACS 140
110

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
10
Density, g/cm3 2.8
3.0
Embodied Carbon, kg CO2/kg material 8.2
8.2
Embodied Energy, MJ/kg 150
150
Embodied Water, L/kg 1180
1150

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 2.4 to 24
27
Resilience: Unit (Modulus of Resilience), kJ/m3 11 to 280
1290
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 50
46
Strength to Weight: Axial, points 10 to 22
45
Strength to Weight: Bending, points 18 to 30
46
Thermal Diffusivity, mm2/s 64
58
Thermal Shock Resistance, points 4.6 to 9.9
21

Alloy Composition

Aluminum (Al), % 96.3 to 99.1
91.3 to 94.7
Chromium (Cr), % 0 to 0.1
0 to 0.1
Copper (Cu), % 0 to 0.1
3.8 to 4.9
Iron (Fe), % 0 to 0.7
0 to 0.3
Magnesium (Mg), % 0 to 0.3
1.2 to 1.8
Manganese (Mn), % 0.9 to 1.5
0.3 to 0.9
Silicon (Si), % 0 to 0.5
0 to 0.2
Titanium (Ti), % 0 to 0.1
0 to 0.15
Zinc (Zn), % 0 to 0.2
0 to 0.25
Zirconium (Zr), % 0 to 0.1
0
Residuals, % 0
0 to 0.15