MakeItFrom.com
Menu (ESC)

3103 Aluminum vs. A444.0 Aluminum

Both 3103 aluminum and A444.0 aluminum are aluminum alloys. They have a moderately high 93% of their average alloy composition in common. There are 29 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is 3103 aluminum and the bottom bar is A444.0 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 70
70
Elongation at Break, % 1.1 to 28
18
Fatigue Strength, MPa 38 to 83
37
Poisson's Ratio 0.33
0.33
Shear Modulus, GPa 26
26
Tensile Strength: Ultimate (UTS), MPa 100 to 220
160
Tensile Strength: Yield (Proof), MPa 39 to 200
66

Thermal Properties

Latent Heat of Fusion, J/g 400
500
Maximum Temperature: Mechanical, °C 190
170
Melting Completion (Liquidus), °C 660
630
Melting Onset (Solidus), °C 640
590
Specific Heat Capacity, J/kg-K 900
900
Thermal Conductivity, W/m-K 160
160
Thermal Expansion, µm/m-K 23
22

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 42
41
Electrical Conductivity: Equal Weight (Specific), % IACS 140
140

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
9.5
Density, g/cm3 2.8
2.6
Embodied Carbon, kg CO2/kg material 8.2
7.9
Embodied Energy, MJ/kg 150
150
Embodied Water, L/kg 1180
1110

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 2.4 to 24
24
Resilience: Unit (Modulus of Resilience), kJ/m3 11 to 280
31
Stiffness to Weight: Axial, points 14
15
Stiffness to Weight: Bending, points 50
53
Strength to Weight: Axial, points 10 to 22
17
Strength to Weight: Bending, points 18 to 30
25
Thermal Diffusivity, mm2/s 64
68
Thermal Shock Resistance, points 4.6 to 9.9
7.3

Alloy Composition

Aluminum (Al), % 96.3 to 99.1
91.6 to 93.5
Chromium (Cr), % 0 to 0.1
0
Copper (Cu), % 0 to 0.1
0 to 0.1
Iron (Fe), % 0 to 0.7
0 to 0.2
Magnesium (Mg), % 0 to 0.3
0 to 0.050
Manganese (Mn), % 0.9 to 1.5
0 to 0.1
Silicon (Si), % 0 to 0.5
6.5 to 7.5
Titanium (Ti), % 0 to 0.1
0 to 0.2
Zinc (Zn), % 0 to 0.2
0 to 0.1
Zirconium (Zr), % 0 to 0.1
0
Residuals, % 0
0 to 0.15