MakeItFrom.com
Menu (ESC)

3103 Aluminum vs. EN 1.3519 Steel

3103 aluminum belongs to the aluminum alloys classification, while EN 1.3519 steel belongs to the iron alloys. There are 25 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 3103 aluminum and the bottom bar is EN 1.3519 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 27 to 62
190 to 220
Elastic (Young's, Tensile) Modulus, GPa 70
190
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 26
72
Tensile Strength: Ultimate (UTS), MPa 100 to 220
620 to 730

Thermal Properties

Latent Heat of Fusion, J/g 400
260
Maximum Temperature: Mechanical, °C 190
430
Melting Completion (Liquidus), °C 660
1440
Melting Onset (Solidus), °C 640
1400
Specific Heat Capacity, J/kg-K 900
480
Thermal Conductivity, W/m-K 160
43
Thermal Expansion, µm/m-K 23
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 42
7.5
Electrical Conductivity: Equal Weight (Specific), % IACS 140
8.7

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
2.6
Density, g/cm3 2.8
7.8
Embodied Carbon, kg CO2/kg material 8.2
1.5
Embodied Energy, MJ/kg 150
21
Embodied Water, L/kg 1180
55

Common Calculations

Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 50
25
Strength to Weight: Axial, points 10 to 22
22 to 26
Strength to Weight: Bending, points 18 to 30
21 to 23
Thermal Diffusivity, mm2/s 64
12
Thermal Shock Resistance, points 4.6 to 9.9
18 to 22

Alloy Composition

Aluminum (Al), % 96.3 to 99.1
0 to 0.050
Carbon (C), % 0
0.93 to 1.1
Chromium (Cr), % 0 to 0.1
1.4 to 1.7
Copper (Cu), % 0 to 0.1
0 to 0.3
Iron (Fe), % 0 to 0.7
95.4 to 96.8
Magnesium (Mg), % 0 to 0.3
0
Manganese (Mn), % 0.9 to 1.5
1.4 to 1.7
Molybdenum (Mo), % 0
0 to 0.1
Oxygen (O), % 0
0 to 0.0015
Phosphorus (P), % 0
0 to 0.025
Silicon (Si), % 0 to 0.5
0.45 to 0.75
Sulfur (S), % 0
0 to 0.030
Titanium (Ti), % 0 to 0.1
0
Zinc (Zn), % 0 to 0.2
0
Zirconium (Zr), % 0 to 0.1
0
Residuals, % 0 to 0.15
0