MakeItFrom.com
Menu (ESC)

3103 Aluminum vs. EN 1.4589 Stainless Steel

3103 aluminum belongs to the aluminum alloys classification, while EN 1.4589 stainless steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 3103 aluminum and the bottom bar is EN 1.4589 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 70
200
Elongation at Break, % 1.1 to 28
17
Fatigue Strength, MPa 38 to 83
260
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 26
77
Shear Strength, MPa 68 to 130
400
Tensile Strength: Ultimate (UTS), MPa 100 to 220
650
Tensile Strength: Yield (Proof), MPa 39 to 200
440

Thermal Properties

Latent Heat of Fusion, J/g 400
280
Maximum Temperature: Mechanical, °C 190
810
Melting Completion (Liquidus), °C 660
1450
Melting Onset (Solidus), °C 640
1400
Specific Heat Capacity, J/kg-K 900
480
Thermal Conductivity, W/m-K 160
25
Thermal Expansion, µm/m-K 23
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 42
2.9
Electrical Conductivity: Equal Weight (Specific), % IACS 140
3.3

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
9.5
Density, g/cm3 2.8
7.8
Embodied Carbon, kg CO2/kg material 8.2
2.4
Embodied Energy, MJ/kg 150
34
Embodied Water, L/kg 1180
110

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 2.4 to 24
96
Resilience: Unit (Modulus of Resilience), kJ/m3 11 to 280
490
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 50
25
Strength to Weight: Axial, points 10 to 22
23
Strength to Weight: Bending, points 18 to 30
22
Thermal Diffusivity, mm2/s 64
6.7
Thermal Shock Resistance, points 4.6 to 9.9
23

Alloy Composition

Aluminum (Al), % 96.3 to 99.1
0
Carbon (C), % 0
0 to 0.080
Chromium (Cr), % 0 to 0.1
13.5 to 15.5
Copper (Cu), % 0 to 0.1
0
Iron (Fe), % 0 to 0.7
78.2 to 85
Magnesium (Mg), % 0 to 0.3
0
Manganese (Mn), % 0.9 to 1.5
0 to 1.0
Molybdenum (Mo), % 0
0.2 to 1.2
Nickel (Ni), % 0
1.0 to 2.5
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0 to 0.5
0 to 1.0
Sulfur (S), % 0
0 to 0.015
Titanium (Ti), % 0 to 0.1
0.3 to 0.5
Zinc (Zn), % 0 to 0.2
0
Zirconium (Zr), % 0 to 0.1
0
Residuals, % 0 to 0.15
0