MakeItFrom.com
Menu (ESC)

3103 Aluminum vs. EN 2.4951 Nickel

3103 aluminum belongs to the aluminum alloys classification, while EN 2.4951 nickel belongs to the nickel alloys. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 3103 aluminum and the bottom bar is EN 2.4951 nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 27 to 62
200
Elastic (Young's, Tensile) Modulus, GPa 70
190
Elongation at Break, % 1.1 to 28
34
Fatigue Strength, MPa 38 to 83
200
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 26
76
Shear Strength, MPa 68 to 130
500
Tensile Strength: Ultimate (UTS), MPa 100 to 220
750
Tensile Strength: Yield (Proof), MPa 39 to 200
270

Thermal Properties

Latent Heat of Fusion, J/g 400
320
Maximum Temperature: Mechanical, °C 190
1150
Melting Completion (Liquidus), °C 660
1360
Melting Onset (Solidus), °C 640
1310
Specific Heat Capacity, J/kg-K 900
460
Thermal Conductivity, W/m-K 160
12
Thermal Expansion, µm/m-K 23
12

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 42
1.6
Electrical Conductivity: Equal Weight (Specific), % IACS 140
1.7

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
60
Density, g/cm3 2.8
8.5
Embodied Carbon, kg CO2/kg material 8.2
9.3
Embodied Energy, MJ/kg 150
130
Embodied Water, L/kg 1180
280

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 2.4 to 24
200
Resilience: Unit (Modulus of Resilience), kJ/m3 11 to 280
190
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 50
23
Strength to Weight: Axial, points 10 to 22
25
Strength to Weight: Bending, points 18 to 30
22
Thermal Diffusivity, mm2/s 64
3.1
Thermal Shock Resistance, points 4.6 to 9.9
23

Alloy Composition

Aluminum (Al), % 96.3 to 99.1
0 to 0.3
Carbon (C), % 0
0.080 to 0.15
Chromium (Cr), % 0 to 0.1
18 to 21
Cobalt (Co), % 0
0 to 5.0
Copper (Cu), % 0 to 0.1
0 to 0.5
Iron (Fe), % 0 to 0.7
0 to 5.0
Magnesium (Mg), % 0 to 0.3
0
Manganese (Mn), % 0.9 to 1.5
0 to 1.0
Nickel (Ni), % 0
65.4 to 81.7
Phosphorus (P), % 0
0 to 0.020
Silicon (Si), % 0 to 0.5
0 to 1.0
Sulfur (S), % 0
0 to 0.015
Titanium (Ti), % 0 to 0.1
0.2 to 0.6
Zinc (Zn), % 0 to 0.2
0
Zirconium (Zr), % 0 to 0.1
0
Residuals, % 0 to 0.15
0