MakeItFrom.com
Menu (ESC)

3103 Aluminum vs. CC496K Bronze

3103 aluminum belongs to the aluminum alloys classification, while CC496K bronze belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 3103 aluminum and the bottom bar is CC496K bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 27 to 62
72
Elastic (Young's, Tensile) Modulus, GPa 70
97
Elongation at Break, % 1.1 to 28
8.6
Poisson's Ratio 0.33
0.35
Shear Modulus, GPa 26
36
Tensile Strength: Ultimate (UTS), MPa 100 to 220
210
Tensile Strength: Yield (Proof), MPa 39 to 200
99

Thermal Properties

Latent Heat of Fusion, J/g 400
170
Maximum Temperature: Mechanical, °C 190
140
Melting Completion (Liquidus), °C 660
900
Melting Onset (Solidus), °C 640
820
Specific Heat Capacity, J/kg-K 900
340
Thermal Conductivity, W/m-K 160
52
Thermal Expansion, µm/m-K 23
19

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 42
11
Electrical Conductivity: Equal Weight (Specific), % IACS 140
11

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
31
Density, g/cm3 2.8
9.2
Embodied Carbon, kg CO2/kg material 8.2
3.3
Embodied Energy, MJ/kg 150
52
Embodied Water, L/kg 1180
380

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 2.4 to 24
15
Resilience: Unit (Modulus of Resilience), kJ/m3 11 to 280
50
Stiffness to Weight: Axial, points 14
5.9
Stiffness to Weight: Bending, points 50
17
Strength to Weight: Axial, points 10 to 22
6.5
Strength to Weight: Bending, points 18 to 30
8.6
Thermal Diffusivity, mm2/s 64
17
Thermal Shock Resistance, points 4.6 to 9.9
8.1

Alloy Composition

Aluminum (Al), % 96.3 to 99.1
0 to 0.010
Antimony (Sb), % 0
0 to 0.5
Chromium (Cr), % 0 to 0.1
0
Copper (Cu), % 0 to 0.1
72 to 79.5
Iron (Fe), % 0 to 0.7
0 to 0.25
Lead (Pb), % 0
13 to 17
Magnesium (Mg), % 0 to 0.3
0
Manganese (Mn), % 0.9 to 1.5
0 to 0.2
Nickel (Ni), % 0
0.5 to 2.0
Phosphorus (P), % 0
0 to 0.1
Silicon (Si), % 0 to 0.5
0 to 0.010
Sulfur (S), % 0
0 to 0.1
Tin (Sn), % 0
6.0 to 8.0
Titanium (Ti), % 0 to 0.1
0
Zinc (Zn), % 0 to 0.2
0 to 2.0
Zirconium (Zr), % 0 to 0.1
0
Residuals, % 0 to 0.15
0