MakeItFrom.com
Menu (ESC)

3103 Aluminum vs. Grade 38 Titanium

3103 aluminum belongs to the aluminum alloys classification, while grade 38 titanium belongs to the titanium alloys. There are 30 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is 3103 aluminum and the bottom bar is grade 38 titanium.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 70
110
Elongation at Break, % 1.1 to 28
11
Fatigue Strength, MPa 38 to 83
530
Poisson's Ratio 0.33
0.32
Shear Modulus, GPa 26
40
Shear Strength, MPa 68 to 130
600
Tensile Strength: Ultimate (UTS), MPa 100 to 220
1000
Tensile Strength: Yield (Proof), MPa 39 to 200
910

Thermal Properties

Latent Heat of Fusion, J/g 400
410
Maximum Temperature: Mechanical, °C 190
330
Melting Completion (Liquidus), °C 660
1620
Melting Onset (Solidus), °C 640
1570
Specific Heat Capacity, J/kg-K 900
550
Thermal Conductivity, W/m-K 160
8.0
Thermal Expansion, µm/m-K 23
9.3

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 42
1.2
Electrical Conductivity: Equal Weight (Specific), % IACS 140
2.4

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
36
Density, g/cm3 2.8
4.5
Embodied Carbon, kg CO2/kg material 8.2
35
Embodied Energy, MJ/kg 150
560
Embodied Water, L/kg 1180
160

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 2.4 to 24
110
Resilience: Unit (Modulus of Resilience), kJ/m3 11 to 280
3840
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 50
35
Strength to Weight: Axial, points 10 to 22
62
Strength to Weight: Bending, points 18 to 30
49
Thermal Diffusivity, mm2/s 64
3.2
Thermal Shock Resistance, points 4.6 to 9.9
72

Alloy Composition

Aluminum (Al), % 96.3 to 99.1
3.5 to 4.5
Carbon (C), % 0
0 to 0.080
Chromium (Cr), % 0 to 0.1
0
Copper (Cu), % 0 to 0.1
0
Hydrogen (H), % 0
0 to 0.015
Iron (Fe), % 0 to 0.7
1.2 to 1.8
Magnesium (Mg), % 0 to 0.3
0
Manganese (Mn), % 0.9 to 1.5
0
Nitrogen (N), % 0
0 to 0.030
Oxygen (O), % 0
0.2 to 0.3
Silicon (Si), % 0 to 0.5
0
Titanium (Ti), % 0 to 0.1
89.9 to 93.1
Vanadium (V), % 0
2.0 to 3.0
Zinc (Zn), % 0 to 0.2
0
Zirconium (Zr), % 0 to 0.1
0
Residuals, % 0
0 to 0.4