MakeItFrom.com
Menu (ESC)

3103 Aluminum vs. Grade 6 Titanium

3103 aluminum belongs to the aluminum alloys classification, while grade 6 titanium belongs to the titanium alloys. There are 30 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is 3103 aluminum and the bottom bar is grade 6 titanium.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 70
100
Elongation at Break, % 1.1 to 28
11
Fatigue Strength, MPa 38 to 83
290
Poisson's Ratio 0.33
0.32
Shear Modulus, GPa 26
39
Shear Strength, MPa 68 to 130
530
Tensile Strength: Ultimate (UTS), MPa 100 to 220
890
Tensile Strength: Yield (Proof), MPa 39 to 200
840

Thermal Properties

Latent Heat of Fusion, J/g 400
410
Maximum Temperature: Mechanical, °C 190
310
Melting Completion (Liquidus), °C 660
1580
Melting Onset (Solidus), °C 640
1530
Specific Heat Capacity, J/kg-K 900
550
Thermal Conductivity, W/m-K 160
7.8
Thermal Expansion, µm/m-K 23
9.4

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 42
1.2
Electrical Conductivity: Equal Weight (Specific), % IACS 140
2.5

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
36
Density, g/cm3 2.8
4.5
Embodied Carbon, kg CO2/kg material 8.2
30
Embodied Energy, MJ/kg 150
480
Embodied Water, L/kg 1180
190

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 2.4 to 24
92
Resilience: Unit (Modulus of Resilience), kJ/m3 11 to 280
3390
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 50
35
Strength to Weight: Axial, points 10 to 22
55
Strength to Weight: Bending, points 18 to 30
46
Thermal Diffusivity, mm2/s 64
3.2
Thermal Shock Resistance, points 4.6 to 9.9
65

Alloy Composition

Aluminum (Al), % 96.3 to 99.1
4.0 to 6.0
Carbon (C), % 0
0 to 0.080
Chromium (Cr), % 0 to 0.1
0
Copper (Cu), % 0 to 0.1
0
Hydrogen (H), % 0
0 to 0.015
Iron (Fe), % 0 to 0.7
0 to 0.5
Magnesium (Mg), % 0 to 0.3
0
Manganese (Mn), % 0.9 to 1.5
0
Nitrogen (N), % 0
0 to 0.030
Oxygen (O), % 0
0 to 0.2
Silicon (Si), % 0 to 0.5
0
Tin (Sn), % 0
2.0 to 3.0
Titanium (Ti), % 0 to 0.1
89.8 to 94
Zinc (Zn), % 0 to 0.2
0
Zirconium (Zr), % 0 to 0.1
0
Residuals, % 0
0 to 0.4