MakeItFrom.com
Menu (ESC)

3103 Aluminum vs. C94900 Bronze

3103 aluminum belongs to the aluminum alloys classification, while C94900 bronze belongs to the copper alloys. There are 26 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 3103 aluminum and the bottom bar is C94900 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 70
110
Elongation at Break, % 1.1 to 28
17
Poisson's Ratio 0.33
0.34
Shear Modulus, GPa 26
41
Tensile Strength: Ultimate (UTS), MPa 100 to 220
300
Tensile Strength: Yield (Proof), MPa 39 to 200
130

Thermal Properties

Latent Heat of Fusion, J/g 400
190
Maximum Temperature: Mechanical, °C 190
170
Melting Completion (Liquidus), °C 660
980
Melting Onset (Solidus), °C 640
910
Specific Heat Capacity, J/kg-K 900
370
Thermal Expansion, µm/m-K 23
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 42
14
Electrical Conductivity: Equal Weight (Specific), % IACS 140
14

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
32
Density, g/cm3 2.8
8.8
Embodied Carbon, kg CO2/kg material 8.2
3.4
Embodied Energy, MJ/kg 150
55
Embodied Water, L/kg 1180
350

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 2.4 to 24
41
Resilience: Unit (Modulus of Resilience), kJ/m3 11 to 280
72
Stiffness to Weight: Axial, points 14
6.9
Stiffness to Weight: Bending, points 50
18
Strength to Weight: Axial, points 10 to 22
9.4
Strength to Weight: Bending, points 18 to 30
11
Thermal Shock Resistance, points 4.6 to 9.9
11

Alloy Composition

Aluminum (Al), % 96.3 to 99.1
0 to 0.0050
Antimony (Sb), % 0
0 to 0.25
Chromium (Cr), % 0 to 0.1
0
Copper (Cu), % 0 to 0.1
79 to 81
Iron (Fe), % 0 to 0.7
0 to 0.3
Lead (Pb), % 0
4.0 to 6.0
Magnesium (Mg), % 0 to 0.3
0
Manganese (Mn), % 0.9 to 1.5
0 to 0.1
Nickel (Ni), % 0
4.0 to 6.0
Phosphorus (P), % 0
0 to 0.050
Silicon (Si), % 0 to 0.5
0 to 0.0050
Sulfur (S), % 0
0 to 0.080
Tin (Sn), % 0
4.0 to 6.0
Titanium (Ti), % 0 to 0.1
0
Zinc (Zn), % 0 to 0.2
4.0 to 6.0
Zirconium (Zr), % 0 to 0.1
0
Residuals, % 0
0 to 0.8