MakeItFrom.com
Menu (ESC)

3103 Aluminum vs. R30816 Cobalt

3103 aluminum belongs to the aluminum alloys classification, while R30816 cobalt belongs to the cobalt alloys. There are 26 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 3103 aluminum and the bottom bar is R30816 cobalt.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 27 to 62
280
Elastic (Young's, Tensile) Modulus, GPa 70
210
Elongation at Break, % 1.1 to 28
23
Fatigue Strength, MPa 38 to 83
250
Poisson's Ratio 0.33
0.3
Shear Modulus, GPa 26
81
Tensile Strength: Ultimate (UTS), MPa 100 to 220
1020
Tensile Strength: Yield (Proof), MPa 39 to 200
460

Thermal Properties

Latent Heat of Fusion, J/g 400
300
Melting Completion (Liquidus), °C 660
1540
Melting Onset (Solidus), °C 640
1460
Specific Heat Capacity, J/kg-K 900
420
Thermal Conductivity, W/m-K 160
13
Thermal Expansion, µm/m-K 23
12

Otherwise Unclassified Properties

Density, g/cm3 2.8
9.1
Embodied Carbon, kg CO2/kg material 8.2
20
Embodied Energy, MJ/kg 150
320
Embodied Water, L/kg 1180
440

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 2.4 to 24
190
Resilience: Unit (Modulus of Resilience), kJ/m3 11 to 280
510
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 50
22
Strength to Weight: Axial, points 10 to 22
31
Strength to Weight: Bending, points 18 to 30
25
Thermal Diffusivity, mm2/s 64
3.3
Thermal Shock Resistance, points 4.6 to 9.9
28

Alloy Composition

Aluminum (Al), % 96.3 to 99.1
0
Carbon (C), % 0
0.32 to 0.42
Chromium (Cr), % 0 to 0.1
19 to 21
Cobalt (Co), % 0
40 to 49.8
Copper (Cu), % 0 to 0.1
0
Iron (Fe), % 0 to 0.7
0 to 5.0
Magnesium (Mg), % 0 to 0.3
0
Manganese (Mn), % 0.9 to 1.5
1.0 to 2.0
Molybdenum (Mo), % 0
3.5 to 4.5
Nickel (Ni), % 0
19 to 21
Niobium (Nb), % 0
3.5 to 4.5
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0 to 0.5
0 to 1.0
Sulfur (S), % 0
0 to 0.030
Tantalum (Ta), % 0
3.5 to 4.5
Titanium (Ti), % 0 to 0.1
0
Tungsten (W), % 0
3.5 to 4.5
Zinc (Zn), % 0 to 0.2
0
Zirconium (Zr), % 0 to 0.1
0
Residuals, % 0 to 0.15
0