MakeItFrom.com
Menu (ESC)

3103 Aluminum vs. S30615 Stainless Steel

3103 aluminum belongs to the aluminum alloys classification, while S30615 stainless steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 3103 aluminum and the bottom bar is S30615 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 27 to 62
190
Elastic (Young's, Tensile) Modulus, GPa 70
190
Elongation at Break, % 1.1 to 28
39
Fatigue Strength, MPa 38 to 83
270
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 26
75
Shear Strength, MPa 68 to 130
470
Tensile Strength: Ultimate (UTS), MPa 100 to 220
690
Tensile Strength: Yield (Proof), MPa 39 to 200
310

Thermal Properties

Latent Heat of Fusion, J/g 400
340
Maximum Temperature: Mechanical, °C 190
960
Melting Completion (Liquidus), °C 660
1370
Melting Onset (Solidus), °C 640
1320
Specific Heat Capacity, J/kg-K 900
500
Thermal Conductivity, W/m-K 160
14
Thermal Expansion, µm/m-K 23
16

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
19
Density, g/cm3 2.8
7.6
Embodied Carbon, kg CO2/kg material 8.2
3.7
Embodied Energy, MJ/kg 150
53
Embodied Water, L/kg 1180
170

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 2.4 to 24
220
Resilience: Unit (Modulus of Resilience), kJ/m3 11 to 280
260
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 50
25
Strength to Weight: Axial, points 10 to 22
25
Strength to Weight: Bending, points 18 to 30
23
Thermal Diffusivity, mm2/s 64
3.7
Thermal Shock Resistance, points 4.6 to 9.9
16

Alloy Composition

Aluminum (Al), % 96.3 to 99.1
0.8 to 1.5
Carbon (C), % 0
0.16 to 0.24
Chromium (Cr), % 0 to 0.1
17 to 19.5
Copper (Cu), % 0 to 0.1
0
Iron (Fe), % 0 to 0.7
56.7 to 65.3
Magnesium (Mg), % 0 to 0.3
0
Manganese (Mn), % 0.9 to 1.5
0 to 2.0
Nickel (Ni), % 0
13.5 to 16
Phosphorus (P), % 0
0 to 0.030
Silicon (Si), % 0 to 0.5
3.2 to 4.0
Sulfur (S), % 0
0 to 0.030
Titanium (Ti), % 0 to 0.1
0
Zinc (Zn), % 0 to 0.2
0
Zirconium (Zr), % 0 to 0.1
0
Residuals, % 0 to 0.15
0