MakeItFrom.com
Menu (ESC)

3103 Aluminum vs. S44330 Stainless Steel

3103 aluminum belongs to the aluminum alloys classification, while S44330 stainless steel belongs to the iron alloys. There are 31 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 3103 aluminum and the bottom bar is S44330 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 27 to 62
160
Elastic (Young's, Tensile) Modulus, GPa 70
200
Elongation at Break, % 1.1 to 28
25
Fatigue Strength, MPa 38 to 83
160
Poisson's Ratio 0.33
0.27
Shear Modulus, GPa 26
78
Shear Strength, MPa 68 to 130
280
Tensile Strength: Ultimate (UTS), MPa 100 to 220
440
Tensile Strength: Yield (Proof), MPa 39 to 200
230

Thermal Properties

Latent Heat of Fusion, J/g 400
290
Maximum Temperature: Mechanical, °C 190
990
Melting Completion (Liquidus), °C 660
1440
Melting Onset (Solidus), °C 640
1390
Specific Heat Capacity, J/kg-K 900
480
Thermal Conductivity, W/m-K 160
21
Thermal Expansion, µm/m-K 23
10

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 42
2.7
Electrical Conductivity: Equal Weight (Specific), % IACS 140
3.1

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
13
Density, g/cm3 2.8
7.7
Embodied Carbon, kg CO2/kg material 8.2
2.8
Embodied Energy, MJ/kg 150
40
Embodied Water, L/kg 1180
140

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 2.4 to 24
91
Resilience: Unit (Modulus of Resilience), kJ/m3 11 to 280
140
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 50
25
Strength to Weight: Axial, points 10 to 22
16
Strength to Weight: Bending, points 18 to 30
17
Thermal Diffusivity, mm2/s 64
5.7
Thermal Shock Resistance, points 4.6 to 9.9
16

Alloy Composition

Aluminum (Al), % 96.3 to 99.1
0
Carbon (C), % 0
0 to 0.025
Chromium (Cr), % 0 to 0.1
20 to 23
Copper (Cu), % 0 to 0.1
0.3 to 0.8
Iron (Fe), % 0 to 0.7
72.5 to 79.7
Magnesium (Mg), % 0 to 0.3
0
Manganese (Mn), % 0.9 to 1.5
0 to 1.0
Niobium (Nb), % 0
0 to 0.8
Nitrogen (N), % 0
0 to 0.025
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0 to 0.5
0 to 1.0
Sulfur (S), % 0
0 to 0.030
Titanium (Ti), % 0 to 0.1
0 to 0.8
Zinc (Zn), % 0 to 0.2
0
Zirconium (Zr), % 0 to 0.1
0
Residuals, % 0 to 0.15
0