MakeItFrom.com
Menu (ESC)

3105 Aluminum vs. ACI-ASTM CF16F Steel

3105 aluminum belongs to the aluminum alloys classification, while ACI-ASTM CF16F steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 3105 aluminum and the bottom bar is ACI-ASTM CF16F steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 29 to 67
150
Elastic (Young's, Tensile) Modulus, GPa 69
200
Elongation at Break, % 1.1 to 20
50
Fatigue Strength, MPa 39 to 95
270
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 26
77
Tensile Strength: Ultimate (UTS), MPa 120 to 240
530
Tensile Strength: Yield (Proof), MPa 46 to 220
280

Thermal Properties

Latent Heat of Fusion, J/g 400
300
Maximum Temperature: Mechanical, °C 180
980
Melting Completion (Liquidus), °C 660
1420
Melting Onset (Solidus), °C 640
1400
Specific Heat Capacity, J/kg-K 900
480
Thermal Conductivity, W/m-K 170
16
Thermal Expansion, µm/m-K 24
16

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 44
2.0
Electrical Conductivity: Equal Weight (Specific), % IACS 140
2.3

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
18
Density, g/cm3 2.8
7.8
Embodied Carbon, kg CO2/kg material 8.2
3.4
Embodied Energy, MJ/kg 150
47
Embodied Water, L/kg 1180
150

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 2.6 to 19
220
Resilience: Unit (Modulus of Resilience), kJ/m3 15 to 340
190
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 50
25
Strength to Weight: Axial, points 12 to 24
19
Strength to Weight: Bending, points 20 to 31
19
Thermal Diffusivity, mm2/s 68
4.3
Thermal Shock Resistance, points 5.2 to 11
12

Alloy Composition

Aluminum (Al), % 96 to 99.5
0
Carbon (C), % 0
0 to 0.16
Chromium (Cr), % 0 to 0.2
18 to 21
Copper (Cu), % 0 to 0.3
0
Iron (Fe), % 0 to 0.7
61.3 to 72.8
Magnesium (Mg), % 0.2 to 0.8
0
Manganese (Mn), % 0.3 to 0.8
0 to 1.5
Molybdenum (Mo), % 0
0 to 1.5
Nickel (Ni), % 0
9.0 to 12
Phosphorus (P), % 0
0 to 0.17
Selenium (Se), % 0
0.2 to 0.35
Silicon (Si), % 0 to 0.6
0 to 2.0
Sulfur (S), % 0
0 to 0.040
Titanium (Ti), % 0 to 0.1
0
Zinc (Zn), % 0 to 0.4
0
Residuals, % 0 to 0.15
0