MakeItFrom.com
Menu (ESC)

3105 Aluminum vs. ASTM A182 Grade F122

3105 aluminum belongs to the aluminum alloys classification, while ASTM A182 grade F122 belongs to the iron alloys. There are 31 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 3105 aluminum and the bottom bar is ASTM A182 grade F122.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 29 to 67
220
Elastic (Young's, Tensile) Modulus, GPa 69
190
Elongation at Break, % 1.1 to 20
23
Fatigue Strength, MPa 39 to 95
320
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 26
76
Shear Strength, MPa 77 to 140
450
Tensile Strength: Ultimate (UTS), MPa 120 to 240
710
Tensile Strength: Yield (Proof), MPa 46 to 220
450

Thermal Properties

Latent Heat of Fusion, J/g 400
270
Maximum Temperature: Mechanical, °C 180
600
Melting Completion (Liquidus), °C 660
1490
Melting Onset (Solidus), °C 640
1440
Specific Heat Capacity, J/kg-K 900
470
Thermal Conductivity, W/m-K 170
24
Thermal Expansion, µm/m-K 24
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 44
10
Electrical Conductivity: Equal Weight (Specific), % IACS 140
12

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
12
Density, g/cm3 2.8
8.0
Embodied Carbon, kg CO2/kg material 8.2
3.0
Embodied Energy, MJ/kg 150
44
Embodied Water, L/kg 1180
100

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 2.6 to 19
140
Resilience: Unit (Modulus of Resilience), kJ/m3 15 to 340
520
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 50
24
Strength to Weight: Axial, points 12 to 24
25
Strength to Weight: Bending, points 20 to 31
22
Thermal Diffusivity, mm2/s 68
6.4
Thermal Shock Resistance, points 5.2 to 11
19

Alloy Composition

Aluminum (Al), % 96 to 99.5
0 to 0.020
Boron (B), % 0
0 to 0.0050
Carbon (C), % 0
0.070 to 0.14
Chromium (Cr), % 0 to 0.2
10 to 11.5
Copper (Cu), % 0 to 0.3
0.3 to 1.7
Iron (Fe), % 0 to 0.7
81.3 to 87.7
Magnesium (Mg), % 0.2 to 0.8
0
Manganese (Mn), % 0.3 to 0.8
0 to 0.7
Molybdenum (Mo), % 0
0.25 to 0.6
Nickel (Ni), % 0
0 to 0.5
Niobium (Nb), % 0
0.040 to 0.1
Nitrogen (N), % 0
0.040 to 0.1
Phosphorus (P), % 0
0 to 0.020
Silicon (Si), % 0 to 0.6
0 to 0.5
Sulfur (S), % 0
0 to 0.010
Titanium (Ti), % 0 to 0.1
0 to 0.010
Tungsten (W), % 0
1.5 to 2.5
Vanadium (V), % 0
0.15 to 0.3
Zinc (Zn), % 0 to 0.4
0
Zirconium (Zr), % 0
0 to 0.010
Residuals, % 0 to 0.15
0