MakeItFrom.com
Menu (ESC)

3105 Aluminum vs. EN 1.7380 Steel

3105 aluminum belongs to the aluminum alloys classification, while EN 1.7380 steel belongs to the iron alloys. There are 31 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 3105 aluminum and the bottom bar is EN 1.7380 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 29 to 67
160 to 170
Elastic (Young's, Tensile) Modulus, GPa 69
190
Elongation at Break, % 1.1 to 20
19 to 20
Fatigue Strength, MPa 39 to 95
200 to 230
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 26
74
Shear Strength, MPa 77 to 140
330 to 350
Tensile Strength: Ultimate (UTS), MPa 120 to 240
540 to 550
Tensile Strength: Yield (Proof), MPa 46 to 220
290 to 330

Thermal Properties

Latent Heat of Fusion, J/g 400
260
Maximum Temperature: Mechanical, °C 180
460
Melting Completion (Liquidus), °C 660
1470
Melting Onset (Solidus), °C 640
1430
Specific Heat Capacity, J/kg-K 900
470
Thermal Conductivity, W/m-K 170
39
Thermal Expansion, µm/m-K 24
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 44
7.6
Electrical Conductivity: Equal Weight (Specific), % IACS 140
8.7

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
3.8
Density, g/cm3 2.8
7.9
Embodied Carbon, kg CO2/kg material 8.2
1.8
Embodied Energy, MJ/kg 150
23
Embodied Water, L/kg 1180
59

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 2.6 to 19
87 to 98
Resilience: Unit (Modulus of Resilience), kJ/m3 15 to 340
230 to 280
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 50
24
Strength to Weight: Axial, points 12 to 24
19 to 20
Strength to Weight: Bending, points 20 to 31
19
Thermal Diffusivity, mm2/s 68
11
Thermal Shock Resistance, points 5.2 to 11
15 to 16

Alloy Composition

Aluminum (Al), % 96 to 99.5
0
Carbon (C), % 0
0.080 to 0.14
Chromium (Cr), % 0 to 0.2
2.0 to 2.5
Copper (Cu), % 0 to 0.3
0 to 0.3
Iron (Fe), % 0 to 0.7
94.6 to 96.6
Magnesium (Mg), % 0.2 to 0.8
0
Manganese (Mn), % 0.3 to 0.8
0.4 to 0.8
Molybdenum (Mo), % 0
0.9 to 1.1
Nitrogen (N), % 0
0 to 0.012
Phosphorus (P), % 0
0 to 0.020
Silicon (Si), % 0 to 0.6
0 to 0.5
Sulfur (S), % 0
0 to 0.010
Titanium (Ti), % 0 to 0.1
0
Zinc (Zn), % 0 to 0.4
0
Residuals, % 0 to 0.15
0