MakeItFrom.com
Menu (ESC)

3105 Aluminum vs. EN AC-44400 Aluminum

Both 3105 aluminum and EN AC-44400 aluminum are aluminum alloys. They have a moderately high 91% of their average alloy composition in common. There are 30 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is 3105 aluminum and the bottom bar is EN AC-44400 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 29 to 67
61
Elastic (Young's, Tensile) Modulus, GPa 69
71
Elongation at Break, % 1.1 to 20
4.1
Fatigue Strength, MPa 39 to 95
79
Poisson's Ratio 0.33
0.33
Shear Modulus, GPa 26
27
Tensile Strength: Ultimate (UTS), MPa 120 to 240
210
Tensile Strength: Yield (Proof), MPa 46 to 220
110

Thermal Properties

Latent Heat of Fusion, J/g 400
540
Maximum Temperature: Mechanical, °C 180
170
Melting Completion (Liquidus), °C 660
600
Melting Onset (Solidus), °C 640
590
Specific Heat Capacity, J/kg-K 900
900
Thermal Conductivity, W/m-K 170
140
Thermal Expansion, µm/m-K 24
22

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 44
33
Electrical Conductivity: Equal Weight (Specific), % IACS 140
110

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
9.5
Density, g/cm3 2.8
2.6
Embodied Carbon, kg CO2/kg material 8.2
7.8
Embodied Energy, MJ/kg 150
150
Embodied Water, L/kg 1180
1080

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 2.6 to 19
7.3
Resilience: Unit (Modulus of Resilience), kJ/m3 15 to 340
85
Stiffness to Weight: Axial, points 14
15
Stiffness to Weight: Bending, points 50
54
Strength to Weight: Axial, points 12 to 24
23
Strength to Weight: Bending, points 20 to 31
31
Thermal Diffusivity, mm2/s 68
60
Thermal Shock Resistance, points 5.2 to 11
9.8

Alloy Composition

Aluminum (Al), % 96 to 99.5
87.1 to 92
Chromium (Cr), % 0 to 0.2
0
Copper (Cu), % 0 to 0.3
0 to 0.1
Iron (Fe), % 0 to 0.7
0 to 0.65
Lead (Pb), % 0
0 to 0.050
Magnesium (Mg), % 0.2 to 0.8
0 to 0.1
Manganese (Mn), % 0.3 to 0.8
0 to 0.5
Nickel (Ni), % 0
0 to 0.050
Silicon (Si), % 0 to 0.6
8.0 to 11
Tin (Sn), % 0
0 to 0.050
Titanium (Ti), % 0 to 0.1
0 to 0.15
Zinc (Zn), % 0 to 0.4
0 to 0.15
Residuals, % 0
0 to 0.15