MakeItFrom.com
Menu (ESC)

3105 Aluminum vs. Grade 17 Titanium

3105 aluminum belongs to the aluminum alloys classification, while grade 17 titanium belongs to the titanium alloys. There are 29 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is 3105 aluminum and the bottom bar is grade 17 titanium.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 69
110
Elongation at Break, % 1.1 to 20
27
Fatigue Strength, MPa 39 to 95
160
Poisson's Ratio 0.33
0.32
Shear Modulus, GPa 26
38
Shear Strength, MPa 77 to 140
180
Tensile Strength: Ultimate (UTS), MPa 120 to 240
270
Tensile Strength: Yield (Proof), MPa 46 to 220
210

Thermal Properties

Latent Heat of Fusion, J/g 400
420
Maximum Temperature: Mechanical, °C 180
320
Melting Completion (Liquidus), °C 660
1660
Melting Onset (Solidus), °C 640
1610
Specific Heat Capacity, J/kg-K 900
540
Thermal Conductivity, W/m-K 170
23
Thermal Expansion, µm/m-K 24
8.7

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 44
3.7
Electrical Conductivity: Equal Weight (Specific), % IACS 140
7.3

Otherwise Unclassified Properties

Density, g/cm3 2.8
4.5
Embodied Carbon, kg CO2/kg material 8.2
36
Embodied Energy, MJ/kg 150
600
Embodied Water, L/kg 1180
230

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 2.6 to 19
68
Resilience: Unit (Modulus of Resilience), kJ/m3 15 to 340
220
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 50
35
Strength to Weight: Axial, points 12 to 24
17
Strength to Weight: Bending, points 20 to 31
21
Thermal Diffusivity, mm2/s 68
9.3
Thermal Shock Resistance, points 5.2 to 11
21

Alloy Composition

Aluminum (Al), % 96 to 99.5
0
Carbon (C), % 0
0 to 0.080
Chromium (Cr), % 0 to 0.2
0
Copper (Cu), % 0 to 0.3
0
Hydrogen (H), % 0
0 to 0.015
Iron (Fe), % 0 to 0.7
0 to 0.2
Magnesium (Mg), % 0.2 to 0.8
0
Manganese (Mn), % 0.3 to 0.8
0
Nitrogen (N), % 0
0 to 0.030
Oxygen (O), % 0
0 to 0.18
Palladium (Pd), % 0
0.040 to 0.080
Silicon (Si), % 0 to 0.6
0
Titanium (Ti), % 0 to 0.1
99.015 to 99.96
Zinc (Zn), % 0 to 0.4
0
Residuals, % 0
0 to 0.4