MakeItFrom.com
Menu (ESC)

3105 Aluminum vs. C68300 Brass

3105 aluminum belongs to the aluminum alloys classification, while C68300 brass belongs to the copper alloys. There are 27 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 3105 aluminum and the bottom bar is C68300 brass.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 69
100
Elongation at Break, % 1.1 to 20
15
Poisson's Ratio 0.33
0.31
Shear Modulus, GPa 26
40
Shear Strength, MPa 77 to 140
260
Tensile Strength: Ultimate (UTS), MPa 120 to 240
430
Tensile Strength: Yield (Proof), MPa 46 to 220
260

Thermal Properties

Latent Heat of Fusion, J/g 400
180
Maximum Temperature: Mechanical, °C 180
120
Melting Completion (Liquidus), °C 660
900
Melting Onset (Solidus), °C 640
890
Specific Heat Capacity, J/kg-K 900
390
Thermal Conductivity, W/m-K 170
120
Thermal Expansion, µm/m-K 24
20

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
23
Density, g/cm3 2.8
8.0
Embodied Carbon, kg CO2/kg material 8.2
2.8
Embodied Energy, MJ/kg 150
46
Embodied Water, L/kg 1180
340

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 2.6 to 19
56
Resilience: Unit (Modulus of Resilience), kJ/m3 15 to 340
330
Stiffness to Weight: Axial, points 14
7.3
Stiffness to Weight: Bending, points 50
20
Strength to Weight: Axial, points 12 to 24
15
Strength to Weight: Bending, points 20 to 31
16
Thermal Diffusivity, mm2/s 68
38
Thermal Shock Resistance, points 5.2 to 11
14

Alloy Composition

Aluminum (Al), % 96 to 99.5
0
Antimony (Sb), % 0
0.3 to 1.0
Cadmium (Cd), % 0
0 to 0.010
Chromium (Cr), % 0 to 0.2
0
Copper (Cu), % 0 to 0.3
59 to 63
Iron (Fe), % 0 to 0.7
0
Lead (Pb), % 0
0 to 0.090
Magnesium (Mg), % 0.2 to 0.8
0
Manganese (Mn), % 0.3 to 0.8
0
Silicon (Si), % 0 to 0.6
0.3 to 1.0
Tin (Sn), % 0
0.050 to 0.2
Titanium (Ti), % 0 to 0.1
0
Zinc (Zn), % 0 to 0.4
34.2 to 40.4
Residuals, % 0
0 to 0.5