MakeItFrom.com
Menu (ESC)

319.0 Aluminum vs. ACI-ASTM CD4MCu Steel

319.0 aluminum belongs to the aluminum alloys classification, while ACI-ASTM CD4MCu steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 319.0 aluminum and the bottom bar is ACI-ASTM CD4MCu steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 72
200
Elongation at Break, % 1.8 to 2.0
18
Fatigue Strength, MPa 76 to 80
340
Poisson's Ratio 0.33
0.27
Shear Modulus, GPa 27
79
Tensile Strength: Ultimate (UTS), MPa 190 to 240
770
Tensile Strength: Yield (Proof), MPa 110 to 180
550

Thermal Properties

Latent Heat of Fusion, J/g 480
300
Maximum Temperature: Mechanical, °C 170
1100
Melting Completion (Liquidus), °C 600
1430
Melting Onset (Solidus), °C 540
1380
Specific Heat Capacity, J/kg-K 880
480
Thermal Conductivity, W/m-K 110
17
Thermal Expansion, µm/m-K 22
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 27
2.2
Electrical Conductivity: Equal Weight (Specific), % IACS 84
2.5

Otherwise Unclassified Properties

Base Metal Price, % relative 10
18
Density, g/cm3 2.9
7.8
Embodied Carbon, kg CO2/kg material 7.7
3.5
Embodied Energy, MJ/kg 140
49
Embodied Water, L/kg 1080
180

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 3.3 to 3.9
130
Resilience: Unit (Modulus of Resilience), kJ/m3 88 to 220
760
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 48
25
Strength to Weight: Axial, points 18 to 24
28
Strength to Weight: Bending, points 25 to 30
24
Thermal Diffusivity, mm2/s 44
4.5
Thermal Shock Resistance, points 8.6 to 11
21

Alloy Composition

Aluminum (Al), % 85.8 to 91.5
0
Carbon (C), % 0
0 to 0.040
Chromium (Cr), % 0
24.5 to 26.5
Copper (Cu), % 3.0 to 4.0
2.8 to 3.3
Iron (Fe), % 0 to 1.0
59.9 to 66.3
Magnesium (Mg), % 0 to 0.1
0
Manganese (Mn), % 0 to 0.5
0 to 1.0
Molybdenum (Mo), % 0
1.8 to 2.3
Nickel (Ni), % 0 to 0.35
4.8 to 6.0
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 5.5 to 6.5
0 to 1.0
Sulfur (S), % 0
0 to 0.040
Titanium (Ti), % 0 to 0.25
0
Zinc (Zn), % 0 to 1.0
0
Residuals, % 0 to 0.5
0