MakeItFrom.com
Menu (ESC)

319.0 Aluminum vs. ASTM A372 Grade M Steel

319.0 aluminum belongs to the aluminum alloys classification, while ASTM A372 grade M steel belongs to the iron alloys. There are 31 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 319.0 aluminum and the bottom bar is ASTM A372 grade M steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 78 to 84
240 to 280
Elastic (Young's, Tensile) Modulus, GPa 72
190
Elongation at Break, % 1.8 to 2.0
18 to 21
Fatigue Strength, MPa 76 to 80
450 to 520
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 27
73
Shear Strength, MPa 170 to 210
510 to 570
Tensile Strength: Ultimate (UTS), MPa 190 to 240
810 to 910
Tensile Strength: Yield (Proof), MPa 110 to 180
660 to 770

Thermal Properties

Latent Heat of Fusion, J/g 480
250
Maximum Temperature: Mechanical, °C 170
450
Melting Completion (Liquidus), °C 600
1460
Melting Onset (Solidus), °C 540
1420
Specific Heat Capacity, J/kg-K 880
470
Thermal Conductivity, W/m-K 110
46
Thermal Expansion, µm/m-K 22
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 27
8.0
Electrical Conductivity: Equal Weight (Specific), % IACS 84
9.1

Otherwise Unclassified Properties

Base Metal Price, % relative 10
5.0
Density, g/cm3 2.9
7.9
Embodied Carbon, kg CO2/kg material 7.7
2.0
Embodied Energy, MJ/kg 140
27
Embodied Water, L/kg 1080
61

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 3.3 to 3.9
160
Resilience: Unit (Modulus of Resilience), kJ/m3 88 to 220
1140 to 1580
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 48
24
Strength to Weight: Axial, points 18 to 24
29 to 32
Strength to Weight: Bending, points 25 to 30
24 to 27
Thermal Diffusivity, mm2/s 44
12
Thermal Shock Resistance, points 8.6 to 11
24 to 27

Alloy Composition

Aluminum (Al), % 85.8 to 91.5
0
Carbon (C), % 0
0 to 0.23
Chromium (Cr), % 0
1.5 to 2.0
Copper (Cu), % 3.0 to 4.0
0
Iron (Fe), % 0 to 1.0
92.5 to 95.1
Magnesium (Mg), % 0 to 0.1
0
Manganese (Mn), % 0 to 0.5
0.2 to 0.4
Molybdenum (Mo), % 0
0.4 to 0.6
Nickel (Ni), % 0 to 0.35
2.8 to 3.9
Phosphorus (P), % 0
0 to 0.015
Silicon (Si), % 5.5 to 6.5
0 to 0.3
Sulfur (S), % 0
0 to 0.010
Titanium (Ti), % 0 to 0.25
0
Vanadium (V), % 0
0 to 0.080
Zinc (Zn), % 0 to 1.0
0
Residuals, % 0 to 0.5
0

Comparable Variants