MakeItFrom.com
Menu (ESC)

319.0 Aluminum vs. AWS E330H

319.0 aluminum belongs to the aluminum alloys classification, while AWS E330H belongs to the iron alloys. There are 24 material properties with values for both materials. Properties with values for just one material (9, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 319.0 aluminum and the bottom bar is AWS E330H.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 72
190
Elongation at Break, % 1.8 to 2.0
11
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 27
76
Tensile Strength: Ultimate (UTS), MPa 190 to 240
690

Thermal Properties

Latent Heat of Fusion, J/g 480
290
Melting Completion (Liquidus), °C 600
1400
Melting Onset (Solidus), °C 540
1350
Specific Heat Capacity, J/kg-K 880
470
Thermal Conductivity, W/m-K 110
12
Thermal Expansion, µm/m-K 22
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 27
1.7
Electrical Conductivity: Equal Weight (Specific), % IACS 84
1.9

Otherwise Unclassified Properties

Base Metal Price, % relative 10
30
Density, g/cm3 2.9
8.1
Embodied Carbon, kg CO2/kg material 7.7
5.4
Embodied Energy, MJ/kg 140
76
Embodied Water, L/kg 1080
180

Common Calculations

Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 48
24
Strength to Weight: Axial, points 18 to 24
24
Strength to Weight: Bending, points 25 to 30
22
Thermal Diffusivity, mm2/s 44
3.2
Thermal Shock Resistance, points 8.6 to 11
19

Alloy Composition

Aluminum (Al), % 85.8 to 91.5
0
Carbon (C), % 0
0.35 to 0.45
Chromium (Cr), % 0
14 to 17
Copper (Cu), % 3.0 to 4.0
0 to 0.75
Iron (Fe), % 0 to 1.0
40.5 to 51.7
Magnesium (Mg), % 0 to 0.1
0
Manganese (Mn), % 0 to 0.5
1.0 to 2.5
Molybdenum (Mo), % 0
0 to 0.75
Nickel (Ni), % 0 to 0.35
33 to 37
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 5.5 to 6.5
0 to 1.0
Sulfur (S), % 0
0 to 0.030
Titanium (Ti), % 0 to 0.25
0
Zinc (Zn), % 0 to 1.0
0
Residuals, % 0 to 0.5
0