MakeItFrom.com
Menu (ESC)

319.0 Aluminum vs. AWS ER80S-Ni1

319.0 aluminum belongs to the aluminum alloys classification, while AWS ER80S-Ni1 belongs to the iron alloys. There are 27 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 319.0 aluminum and the bottom bar is AWS ER80S-Ni1.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 72
190
Elongation at Break, % 1.8 to 2.0
27
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 27
72
Tensile Strength: Ultimate (UTS), MPa 190 to 240
630
Tensile Strength: Yield (Proof), MPa 110 to 180
530

Thermal Properties

Latent Heat of Fusion, J/g 480
260
Melting Completion (Liquidus), °C 600
1450
Melting Onset (Solidus), °C 540
1410
Specific Heat Capacity, J/kg-K 880
470
Thermal Conductivity, W/m-K 110
41
Thermal Expansion, µm/m-K 22
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 27
7.5
Electrical Conductivity: Equal Weight (Specific), % IACS 84
8.6

Otherwise Unclassified Properties

Base Metal Price, % relative 10
2.7
Density, g/cm3 2.9
7.8
Embodied Carbon, kg CO2/kg material 7.7
1.6
Embodied Energy, MJ/kg 140
21
Embodied Water, L/kg 1080
49

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 3.3 to 3.9
160
Resilience: Unit (Modulus of Resilience), kJ/m3 88 to 220
740
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 48
24
Strength to Weight: Axial, points 18 to 24
22
Strength to Weight: Bending, points 25 to 30
21
Thermal Diffusivity, mm2/s 44
11
Thermal Shock Resistance, points 8.6 to 11
19

Alloy Composition

Aluminum (Al), % 85.8 to 91.5
0
Carbon (C), % 0
0 to 0.12
Chromium (Cr), % 0
0 to 0.15
Copper (Cu), % 3.0 to 4.0
0 to 0.35
Iron (Fe), % 0 to 1.0
95.3 to 98.8
Magnesium (Mg), % 0 to 0.1
0
Manganese (Mn), % 0 to 0.5
0 to 1.3
Molybdenum (Mo), % 0
0 to 0.35
Nickel (Ni), % 0 to 0.35
0.8 to 1.1
Phosphorus (P), % 0
0 to 0.025
Silicon (Si), % 5.5 to 6.5
0.4 to 0.8
Sulfur (S), % 0
0 to 0.025
Titanium (Ti), % 0 to 0.25
0
Vanadium (V), % 0
0 to 0.050
Zinc (Zn), % 0 to 1.0
0
Residuals, % 0
0 to 0.5