MakeItFrom.com
Menu (ESC)

319.0 Aluminum vs. EN 1.0558 Cast Steel

319.0 aluminum belongs to the aluminum alloys classification, while EN 1.0558 cast steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 319.0 aluminum and the bottom bar is EN 1.0558 cast steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 72
190
Elongation at Break, % 1.8 to 2.0
18
Fatigue Strength, MPa 76 to 80
230
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 27
73
Tensile Strength: Ultimate (UTS), MPa 190 to 240
640
Tensile Strength: Yield (Proof), MPa 110 to 180
340

Thermal Properties

Latent Heat of Fusion, J/g 480
250
Maximum Temperature: Mechanical, °C 170
400
Melting Completion (Liquidus), °C 600
1470
Melting Onset (Solidus), °C 540
1430
Specific Heat Capacity, J/kg-K 880
470
Thermal Conductivity, W/m-K 110
53
Thermal Expansion, µm/m-K 22
12

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 27
7.8
Electrical Conductivity: Equal Weight (Specific), % IACS 84
8.9

Otherwise Unclassified Properties

Base Metal Price, % relative 10
1.7
Density, g/cm3 2.9
7.9
Embodied Carbon, kg CO2/kg material 7.7
1.4
Embodied Energy, MJ/kg 140
18
Embodied Water, L/kg 1080
45

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 3.3 to 3.9
99
Resilience: Unit (Modulus of Resilience), kJ/m3 88 to 220
300
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 48
24
Strength to Weight: Axial, points 18 to 24
22
Strength to Weight: Bending, points 25 to 30
21
Thermal Diffusivity, mm2/s 44
14
Thermal Shock Resistance, points 8.6 to 11
20

Alloy Composition

Aluminum (Al), % 85.8 to 91.5
0
Copper (Cu), % 3.0 to 4.0
0
Iron (Fe), % 0 to 1.0
99.935 to 100
Magnesium (Mg), % 0 to 0.1
0
Manganese (Mn), % 0 to 0.5
0
Nickel (Ni), % 0 to 0.35
0
Phosphorus (P), % 0
0 to 0.035
Silicon (Si), % 5.5 to 6.5
0
Sulfur (S), % 0
0 to 0.030
Titanium (Ti), % 0 to 0.25
0
Zinc (Zn), % 0 to 1.0
0
Residuals, % 0 to 0.5
0