MakeItFrom.com
Menu (ESC)

319.0 Aluminum vs. EN 1.4423 Stainless Steel

319.0 aluminum belongs to the aluminum alloys classification, while EN 1.4423 stainless steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 319.0 aluminum and the bottom bar is EN 1.4423 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 72
200
Elongation at Break, % 1.8 to 2.0
17
Fatigue Strength, MPa 76 to 80
380
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 27
77
Shear Strength, MPa 170 to 210
520
Tensile Strength: Ultimate (UTS), MPa 190 to 240
850
Tensile Strength: Yield (Proof), MPa 110 to 180
630

Thermal Properties

Latent Heat of Fusion, J/g 480
280
Maximum Temperature: Mechanical, °C 170
780
Melting Completion (Liquidus), °C 600
1460
Melting Onset (Solidus), °C 540
1420
Specific Heat Capacity, J/kg-K 880
470
Thermal Conductivity, W/m-K 110
16
Thermal Expansion, µm/m-K 22
9.9

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 27
2.3
Electrical Conductivity: Equal Weight (Specific), % IACS 84
2.6

Otherwise Unclassified Properties

Base Metal Price, % relative 10
14
Density, g/cm3 2.9
7.9
Embodied Carbon, kg CO2/kg material 7.7
3.2
Embodied Energy, MJ/kg 140
43
Embodied Water, L/kg 1080
120

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 3.3 to 3.9
130
Resilience: Unit (Modulus of Resilience), kJ/m3 88 to 220
1000
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 48
25
Strength to Weight: Axial, points 18 to 24
30
Strength to Weight: Bending, points 25 to 30
25
Thermal Diffusivity, mm2/s 44
4.3
Thermal Shock Resistance, points 8.6 to 11
31

Alloy Composition

Aluminum (Al), % 85.8 to 91.5
0
Carbon (C), % 0
0 to 0.020
Chromium (Cr), % 0
11 to 13
Copper (Cu), % 3.0 to 4.0
0.2 to 0.8
Iron (Fe), % 0 to 1.0
73.8 to 80.5
Magnesium (Mg), % 0 to 0.1
0
Manganese (Mn), % 0 to 0.5
0 to 2.0
Molybdenum (Mo), % 0
2.3 to 2.8
Nickel (Ni), % 0 to 0.35
6.0 to 7.0
Nitrogen (N), % 0
0 to 0.020
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 5.5 to 6.5
0 to 0.5
Sulfur (S), % 0
0 to 0.0030
Titanium (Ti), % 0 to 0.25
0
Zinc (Zn), % 0 to 1.0
0
Residuals, % 0 to 0.5
0