MakeItFrom.com
Menu (ESC)

319.0 Aluminum vs. EN 1.4872 Stainless Steel

319.0 aluminum belongs to the aluminum alloys classification, while EN 1.4872 stainless steel belongs to the iron alloys. There are 31 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 319.0 aluminum and the bottom bar is EN 1.4872 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 78 to 84
270
Elastic (Young's, Tensile) Modulus, GPa 72
200
Elongation at Break, % 1.8 to 2.0
28
Fatigue Strength, MPa 76 to 80
410
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 27
79
Shear Strength, MPa 170 to 210
620
Tensile Strength: Ultimate (UTS), MPa 190 to 240
950
Tensile Strength: Yield (Proof), MPa 110 to 180
560

Thermal Properties

Latent Heat of Fusion, J/g 480
300
Maximum Temperature: Mechanical, °C 170
1150
Melting Completion (Liquidus), °C 600
1390
Melting Onset (Solidus), °C 540
1340
Specific Heat Capacity, J/kg-K 880
490
Thermal Conductivity, W/m-K 110
15
Thermal Expansion, µm/m-K 22
16

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 27
2.3
Electrical Conductivity: Equal Weight (Specific), % IACS 84
2.7

Otherwise Unclassified Properties

Base Metal Price, % relative 10
17
Density, g/cm3 2.9
7.6
Embodied Carbon, kg CO2/kg material 7.7
3.3
Embodied Energy, MJ/kg 140
47
Embodied Water, L/kg 1080
180

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 3.3 to 3.9
230
Resilience: Unit (Modulus of Resilience), kJ/m3 88 to 220
780
Stiffness to Weight: Axial, points 14
15
Stiffness to Weight: Bending, points 48
26
Strength to Weight: Axial, points 18 to 24
35
Strength to Weight: Bending, points 25 to 30
28
Thermal Diffusivity, mm2/s 44
3.9
Thermal Shock Resistance, points 8.6 to 11
21

Alloy Composition

Aluminum (Al), % 85.8 to 91.5
0
Carbon (C), % 0
0.2 to 0.3
Chromium (Cr), % 0
24 to 26
Copper (Cu), % 3.0 to 4.0
0
Iron (Fe), % 0 to 1.0
54.2 to 61.6
Magnesium (Mg), % 0 to 0.1
0
Manganese (Mn), % 0 to 0.5
8.0 to 10
Nickel (Ni), % 0 to 0.35
6.0 to 8.0
Nitrogen (N), % 0
0.2 to 0.4
Phosphorus (P), % 0
0 to 0.045
Silicon (Si), % 5.5 to 6.5
0 to 1.0
Sulfur (S), % 0
0 to 0.015
Titanium (Ti), % 0 to 0.25
0
Zinc (Zn), % 0 to 1.0
0
Residuals, % 0 to 0.5
0