MakeItFrom.com
Menu (ESC)

319.0 Aluminum vs. EN 1.8895 Steel

319.0 aluminum belongs to the aluminum alloys classification, while EN 1.8895 steel belongs to the iron alloys. There are 31 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 319.0 aluminum and the bottom bar is EN 1.8895 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 78 to 84
120
Elastic (Young's, Tensile) Modulus, GPa 72
190
Elongation at Break, % 1.8 to 2.0
26
Fatigue Strength, MPa 76 to 80
220
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 27
73
Shear Strength, MPa 170 to 210
260
Tensile Strength: Ultimate (UTS), MPa 190 to 240
400
Tensile Strength: Yield (Proof), MPa 110 to 180
300

Thermal Properties

Latent Heat of Fusion, J/g 480
250
Maximum Temperature: Mechanical, °C 170
400
Melting Completion (Liquidus), °C 600
1460
Melting Onset (Solidus), °C 540
1420
Specific Heat Capacity, J/kg-K 880
470
Thermal Conductivity, W/m-K 110
49
Thermal Expansion, µm/m-K 22
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 27
7.2
Electrical Conductivity: Equal Weight (Specific), % IACS 84
8.3

Otherwise Unclassified Properties

Base Metal Price, % relative 10
2.2
Density, g/cm3 2.9
7.8
Embodied Carbon, kg CO2/kg material 7.7
1.6
Embodied Energy, MJ/kg 140
21
Embodied Water, L/kg 1080
47

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 3.3 to 3.9
96
Resilience: Unit (Modulus of Resilience), kJ/m3 88 to 220
240
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 48
24
Strength to Weight: Axial, points 18 to 24
14
Strength to Weight: Bending, points 25 to 30
15
Thermal Diffusivity, mm2/s 44
13
Thermal Shock Resistance, points 8.6 to 11
12

Alloy Composition

Aluminum (Al), % 85.8 to 91.5
0.020 to 0.060
Carbon (C), % 0
0 to 0.13
Copper (Cu), % 3.0 to 4.0
0
Iron (Fe), % 0 to 1.0
97 to 99.98
Magnesium (Mg), % 0 to 0.1
0
Manganese (Mn), % 0 to 0.5
0 to 1.5
Molybdenum (Mo), % 0
0 to 0.2
Nickel (Ni), % 0 to 0.35
0 to 0.3
Niobium (Nb), % 0
0 to 0.050
Nitrogen (N), % 0
0 to 0.020
Phosphorus (P), % 0
0 to 0.035
Silicon (Si), % 5.5 to 6.5
0 to 0.5
Sulfur (S), % 0
0 to 0.030
Titanium (Ti), % 0 to 0.25
0 to 0.050
Vanadium (V), % 0
0 to 0.080
Zinc (Zn), % 0 to 1.0
0
Residuals, % 0 to 0.5
0