MakeItFrom.com
Menu (ESC)

319.0 Aluminum vs. EN AC-46500 Aluminum

Both 319.0 aluminum and EN AC-46500 aluminum are aluminum alloys. They have a moderately high 95% of their average alloy composition in common. There are 30 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is 319.0 aluminum and the bottom bar is EN AC-46500 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 78 to 84
91
Elastic (Young's, Tensile) Modulus, GPa 72
74
Elongation at Break, % 1.8 to 2.0
1.0
Fatigue Strength, MPa 76 to 80
110
Poisson's Ratio 0.33
0.33
Shear Modulus, GPa 27
28
Tensile Strength: Ultimate (UTS), MPa 190 to 240
270
Tensile Strength: Yield (Proof), MPa 110 to 180
160

Thermal Properties

Latent Heat of Fusion, J/g 480
520
Maximum Temperature: Mechanical, °C 170
180
Melting Completion (Liquidus), °C 600
610
Melting Onset (Solidus), °C 540
520
Specific Heat Capacity, J/kg-K 880
880
Thermal Conductivity, W/m-K 110
100
Thermal Expansion, µm/m-K 22
21

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 27
26
Electrical Conductivity: Equal Weight (Specific), % IACS 84
81

Otherwise Unclassified Properties

Base Metal Price, % relative 10
10
Density, g/cm3 2.9
2.9
Embodied Carbon, kg CO2/kg material 7.7
7.6
Embodied Energy, MJ/kg 140
140
Embodied Water, L/kg 1080
1030

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 3.3 to 3.9
2.3
Resilience: Unit (Modulus of Resilience), kJ/m3 88 to 220
170
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 48
49
Strength to Weight: Axial, points 18 to 24
26
Strength to Weight: Bending, points 25 to 30
32
Thermal Diffusivity, mm2/s 44
41
Thermal Shock Resistance, points 8.6 to 11
12

Alloy Composition

Aluminum (Al), % 85.8 to 91.5
77.9 to 90
Chromium (Cr), % 0
0 to 0.15
Copper (Cu), % 3.0 to 4.0
2.0 to 4.0
Iron (Fe), % 0 to 1.0
0 to 1.3
Lead (Pb), % 0
0 to 0.35
Magnesium (Mg), % 0 to 0.1
0.050 to 0.55
Manganese (Mn), % 0 to 0.5
0 to 0.55
Nickel (Ni), % 0 to 0.35
0 to 0.55
Silicon (Si), % 5.5 to 6.5
8.0 to 11
Tin (Sn), % 0
0 to 0.15
Titanium (Ti), % 0 to 0.25
0 to 0.25
Zinc (Zn), % 0 to 1.0
0 to 3.0
Residuals, % 0
0 to 0.25