MakeItFrom.com
Menu (ESC)

319.0 Aluminum vs. Grade CW2M Nickel

319.0 aluminum belongs to the aluminum alloys classification, while grade CW2M nickel belongs to the nickel alloys. There are 25 material properties with values for both materials. Properties with values for just one material (7, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 319.0 aluminum and the bottom bar is grade CW2M nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 72
210
Elongation at Break, % 1.8 to 2.0
23
Fatigue Strength, MPa 76 to 80
190
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 27
83
Tensile Strength: Ultimate (UTS), MPa 190 to 240
560
Tensile Strength: Yield (Proof), MPa 110 to 180
310

Thermal Properties

Latent Heat of Fusion, J/g 480
330
Maximum Temperature: Mechanical, °C 170
960
Melting Completion (Liquidus), °C 600
1520
Melting Onset (Solidus), °C 540
1460
Specific Heat Capacity, J/kg-K 880
430
Thermal Expansion, µm/m-K 22
12

Otherwise Unclassified Properties

Base Metal Price, % relative 10
70
Density, g/cm3 2.9
8.8
Embodied Carbon, kg CO2/kg material 7.7
12
Embodied Energy, MJ/kg 140
170
Embodied Water, L/kg 1080
290

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 3.3 to 3.9
110
Resilience: Unit (Modulus of Resilience), kJ/m3 88 to 220
220
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 48
23
Strength to Weight: Axial, points 18 to 24
18
Strength to Weight: Bending, points 25 to 30
17
Thermal Shock Resistance, points 8.6 to 11
16

Alloy Composition

Aluminum (Al), % 85.8 to 91.5
0
Carbon (C), % 0
0 to 0.020
Chromium (Cr), % 0
15 to 17.5
Copper (Cu), % 3.0 to 4.0
0
Iron (Fe), % 0 to 1.0
0 to 2.0
Magnesium (Mg), % 0 to 0.1
0
Manganese (Mn), % 0 to 0.5
0 to 1.0
Molybdenum (Mo), % 0
15 to 17.5
Nickel (Ni), % 0 to 0.35
60.1 to 70
Phosphorus (P), % 0
0 to 0.030
Silicon (Si), % 5.5 to 6.5
0 to 0.8
Sulfur (S), % 0
0 to 0.030
Titanium (Ti), % 0 to 0.25
0
Tungsten (W), % 0
0 to 1.0
Zinc (Zn), % 0 to 1.0
0
Residuals, % 0 to 0.5
0